Replacing chemical fertilizer with manure reduces N2O emissions in winter wheat-summer maize cropping system under limited irrigation

被引:14
|
作者
Wang, Xiquan [1 ,2 ]
Wang, Shang [1 ,3 ]
Zang, Huadong [1 ]
Nie, Jiangwen [1 ]
Zhao, Jie [1 ]
Wang, Peixin [1 ]
Peixoto, Leanne [4 ]
Yang, Yadong [1 ]
Olesen, Jorgen Eivind [4 ]
Zeng, Zhaohai [1 ]
机构
[1] China Agr Univ, Coll Agron & Biotechnol, Key Lab Farming Syst Minist Agr, Beijing 100193, Peoples R China
[2] Inner Mongolia Agr Univ, Coll Agron, 10010, Hohhot, Peoples R China
[3] Christian Albrechts Univ Kiel, Inst Phytopathol, Dept Soil & Plant Microbiome, D-24118 Kiel, Germany
[4] Aarhus Univ, Dept Agroecol, Blichers 20, DK-8830 Tjele, Denmark
基金
中国国家自然科学基金;
关键词
Manure application; Cumulative N 2 O emissions; Grain nitrogen yield; North China Plain; Yield scaledN2O emission; NITROUS-OXIDE EMISSIONS; LONG-TERM APPLICATION; USE EFFICIENCY; SOIL; YIELD; MANAGEMENT; GRAIN; DYNAMICS; COMPOST; NO;
D O I
10.1016/j.jenvman.2023.117677
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrous oxide (N2O) emissions from agroecosystems are a major contributor to global warming and stratospheric ozone depletion. However, knowledge concerning the hotspots and hot moments of soil N2O emissions with manure application and irrigation, as well as the underlying mechanisms remain incomplete. Here, a 3-year field experiment was conducted with the combination of fertilization (no fertilizer, F0; 100% chemical fertilizer N, Fc; 50% chemical N + 50% manure N, Fc + m; and 100% manure N, Fm) and irrigation (with irrigation, W1; and without irrigation, W0; at wheat jointing stage) for winter wheat - summer maize cropping system in the North China Plain. Results showed that irrigation did not affect annual N2O emissions of the wheat-maize system. Manure application (Fc + m and Fm) reduced annual N2O emissions by 25-51% compared with Fc, which mainly occurred during 2 weeks after fertilization combined with irrigation (or heavy rainfall). In particular, Fc + m reduced the cumulative N2O emissions during 2 weeks after winter wheat sowing and summer maize top dressing by 0.28 and 0.11 kg ha-1, respectively, compared with Fc. Meanwhile, Fm maintained the grain N yield and Fc + m increased grain N yield by 8% compared with Fc under W1. Overall, Fm maintained the annual grain N yield and lower N2O emissions compared to Fc under W0, and Fc + m increased the annual grain N yield and maintained N2O emissions compared with Fc under W1, respectively. Our results provide scientific support for using manure to minimize N2O emissions while maintaining crop N yield under optimal irrigation to support the green transition in agricultural production.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Low N2O emissions from wheat in a wheat-rice double cropping system due to manure substitution are associated with changes in the abundance of functional microbes
    Kong, Delei
    Jin, Yaguo
    Yu, Kai
    Swaney, Dennis P.
    Liu, Shuwei
    Zou, Jianwen
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2021, 311
  • [42] The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard
    Zhou, Wei
    Ma, Qingxu
    Wu, Lei
    Hu, Ronggui
    Jones, Davey L.
    Chadwick, David R.
    Jiang, Yanbing
    Wu, Yupeng
    Xia, Xiange
    Yang, Li
    Chen, Yunfeng
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2022, 326
  • [43] Reducing N2O emissions while maintaining yield in a wheat-maize rotation system modelled by APSIM
    Li, Jianzheng
    Wang, Ligang
    Luo, Zhongkui
    Wang, Enli
    Wang, Guocheng
    Zhou, Han
    Li, Hu
    Xu, Shiwei
    AGRICULTURAL SYSTEMS, 2021, 194
  • [44] Minimisation of N2O emissions from a plant-soil system under landfill leachate irrigation
    Zhang, Hou-Hu
    He, Pin-Jing
    Shao, Li-Ming
    Yuan, Li
    WASTE MANAGEMENT, 2009, 29 (03) : 1012 - 1017
  • [45] Effects of the nitrification inhibitor nitrapyrin on N2O emissions under elevated CO2 and rising temperature in a wheat cropping system
    Zong, Yuzheng
    Qiu, Na
    Li, Lujie
    Zhang, Yan
    Shi, Xinrui
    Zhang, Dongsheng
    Hao, Xingyu
    Li, Ping
    Lam, Shu Kee
    APPLIED SOIL ECOLOGY, 2024, 201
  • [46] Mixed application of controlled-release urea and normal urea can improve crop productivity and reduce the carbon footprint under straw return in winter wheat-summer maize cropping system
    Zhang, Guangxin
    Liu, Shiju
    Wang, Xufang
    Zhang, Yan
    Zhao, Dehao
    Wen, Xiaoxia
    Han, Juan
    Liao, Yuncheng
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 151
  • [47] Partial organic substitution for synthetic fertilizer improves soil fertility and crop yields while mitigating N2O emissions in wheat-maize rotation system
    Wu, Gong
    Yang, Shuo
    Luan, Chong-sheng
    Wu, Qi
    Lin, Lei-li
    Li, Xiao-xiao
    Che, Zhao
    Zhou, De-bao
    Dong, Zhao-rong
    Song, He
    EUROPEAN JOURNAL OF AGRONOMY, 2024, 154
  • [48] A 4-year field measurement of N2O emissions from a maize-wheat rotation system as influenced by partial organic substitution for synthetic fertilizer
    Song, He
    Wang, Jun
    Zhang, Kui
    Zhang, Manyu
    Hui, Rui
    Sui, Tianyi
    Yang, Lin
    Du, Wenbin
    Dong, Zhaorong
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 263
  • [49] Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield
    Akhtar, Kashif
    Wang, Weiyu
    Ren, Guangxin
    Khan, Ahmad
    Enguang, Nie
    Khan, Aziz
    Feng, Yongzhong
    Yang, Gaihe
    Wang, Haiyan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 741 (741)
  • [50] Annual NO and N2O emissions under different fertilisation regimes from a greenhouse vegetable cropping system in subtropical China
    Lin, Feng
    Zhang, Yaojun
    McDaniel, Marshall D.
    Liu, Shuwei
    Zou, Jianwen
    SOIL RESEARCH, 2022, 60 (07) : 692 - 704