Improved higher-order Sobolev inequalities on CR sphere

被引:0
|
作者
Yan, Zetian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
CR Yamabe problem; CR GJMS operators; Sharp Sobolev inequalities; SHARP CONSTANTS;
D O I
10.1016/j.jfa.2023.109890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve higher-order CR Sobolev inequalities on S2n+1 under the vanishing of higher order moments of the volume element. As an application, we give a new and direct proof of the classification of minimizers of the CR invariant higher-order Sobolev inequalities. In the same spirit, we prove almost sharp Sobolev inequalities for GJMS operators to general CR manifolds, and obtain the existence of minimizers in C2k(N) of higher-order CR Yamabe-type problems when Yk(N) < Yk(Hn).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Ostrowski Type Inequalities for Higher-Order Derivatives
    Mingjin Wang
    Xilai Zhao
    Journal of Inequalities and Applications, 2009
  • [32] ON DELAY DIFFERENTIAL-INEQUALITIES OF HIGHER-ORDER
    LADAS, G
    STAVROULAKIS, IP
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1982, 25 (03): : 348 - 354
  • [33] Critical dimensions and higher order Sobolev inequalities with remainder terms
    Filippo Gazzola
    Hans-Christoph Grunau
    Nonlinear Differential Equations and Applications NoDEA, 2001, 8 : 35 - 44
  • [34] Best constants for Sobolev inequalities for higher order fractional derivatives
    Cotsiolis, A
    Tavoularis, NK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) : 225 - 236
  • [35] Critical dimensions and higher order Sobolev inequalities with remainder terms
    Gazzola, F
    Grunau, HC
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (01): : 35 - 44
  • [36] A note on higher order fractional Hardy-Sobolev inequalities
    Musina, Roberta
    Nazarov, Alexander I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 203
  • [37] Higher-order Sobolev embeddings into spaces of Campanato and Morrey type
    Cavaliere, Paola
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 251
  • [38] IMPROVED SOBOLEV INEQUALITIES
    STRICHARTZ, RS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 279 (01) : 397 - 409
  • [39] Combined higher-order interactions of mixed symmetry on the sphere
    Lohe, M. A.
    CHAOS, 2022, 32 (02)
  • [40] MIMO processing based on higher-order Poincare sphere
    Fernandes, Gil M.
    Muga, Nelson J.
    Pinto, Armando N.
    THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2017, 10453