Improved higher-order Sobolev inequalities on CR sphere

被引:0
|
作者
Yan, Zetian [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
CR Yamabe problem; CR GJMS operators; Sharp Sobolev inequalities; SHARP CONSTANTS;
D O I
10.1016/j.jfa.2023.109890
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve higher-order CR Sobolev inequalities on S2n+1 under the vanishing of higher order moments of the volume element. As an application, we give a new and direct proof of the classification of minimizers of the CR invariant higher-order Sobolev inequalities. In the same spirit, we prove almost sharp Sobolev inequalities for GJMS operators to general CR manifolds, and obtain the existence of minimizers in C2k(N) of higher-order CR Yamabe-type problems when Yk(N) < Yk(Hn).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Improved Results of Perturbed Inequalities for Higher-Order Differentiable Functions and their Various Applications
    Erden, Samet
    Baskir, M. Bahar
    FILOMAT, 2021, 35 (10) : 3475 - 3490
  • [22] Higher order Sobolev trace inequalities on balls revisited
    Quoc Anh Ngo
    Van Hoang Nguyen
    Quoc Hung Phan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (07)
  • [23] On logarithmic Sobolev inequalities for higher order fractional derivatives
    Cotsiolis, A
    Tavoularis, NK
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (03) : 205 - 208
  • [24] From toeplitz eigenvalues through Green's kernels to higher-order Wirtinger-Sobolev inequalities
    Bottcher, Albrecht
    Widom, Harold
    EXTENDED FIELD OF OPERATOR THEORY, 2007, 171 : 73 - +
  • [25] Approximation in higher-order Sobolev spaces and Hodge systems
    Bousquet, Pierre
    Russ, Emmanuel
    Wang, Yi
    Yung, Po-Lam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (05) : 1430 - 1478
  • [26] HIGHER-ORDER DIFFERENCES AND DIFFERENTIALS FOR FUNCTIONS IN SOBOLEV SPACES
    MARCUS, M
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (04) : 321 - 326
  • [27] Elliptic equations of higher-order in weighted Sobolev spaces
    Azroul E.
    Benkirane A.
    Redwane H.
    Rhoudaf M.
    Afrika Matematika, 2014, 25 (3) : 645 - 665
  • [28] Amplification of Higher-Order Poincare Sphere beams
    Naidoo, Darryl
    Sroor, Hend
    Litvin, Igor
    Forbes, Andrew
    LASER BEAM SHAPING XIX, 2019, 11107
  • [29] Ostrowski Type Inequalities for Higher-Order Derivatives
    Wang, Mingjin
    Zhao, Xilai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [30] ON EXTENSIONS OF HIGHER-ORDER HARDY'S INEQUALITIES
    Galaktionov, Victor A.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (03) : 327 - 344