Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice

被引:6
|
作者
Xie, Zhuqing [1 ,2 ]
Yao, Minghua [3 ]
Castro-Mejia, Josue L.
Ma, Ming [4 ]
Zhu, Yuyan [5 ]
Fu, Xiong
Huang, Qiang [1 ]
Zhang, Bin [1 ,6 ]
机构
[1] South China Univ Technol, Sch Food Sci & Engn, Guangdong Prov Key Lab Green Proc Nat Prod & Prod, Guangzhou 510640, Peoples R China
[2] Univ Copenhagen, Dept Food Sci, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
[3] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Shanghai 200080, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[5] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Kowloon, Hong Kong, Peoples R China
[6] South China Univ Technol, Overseas Expertise Intro Ctr Discipline Innovat F, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Propionylated high-amylose maize starch; High-fat diet; Propionate; Gut microbiota; RS4-TYPE RESISTANT STARCH; INSULIN-RESISTANCE; METABOLIC SYNDROME; OXIDATIVE STRESS; ASSOCIATION; BUTYRATE; SERUM; ACIDS; FERMENTATION; INFLAMMATION;
D O I
10.1016/j.jff.2023.105447
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Obesity threatens human health worldwide, and mounting findings have found that gut microbiota (GM) changes induced by diet intervention influence its development. This study aims to investigate the anti-obesity effects and GM changes of propionylated high-amylose maize starch (PS) in C57BL/6J mice fed with high-fat diet (HFD). In our results, PS decreased the body weight of HFD-fed mice after 8 weeks and regulated the glucose stability and insulin resistance. High-amylose maize starch (HAMS) and PS regulated the serum lipid levels and inflammatory response. Moreover, PS yielded more propionate relative to HAMS, proving that introduced propionyl groups could be released in the colon. 16S rRNA results showed that PS altered GM with the increase of bacteria (S24-7 and Ruminococcus) and decrease of harmful genera, which is linked to the anti-obesity effect. Our results provide a reference for the design of functional dietary fibers inducing high propionate production and GM modulation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Pleurotus Ostreatus Ameliorates Obesity by Modulating the Gut Microbiota in Obese Mice Induced by High-Fat Diet
    Hu, Yanzhou
    Xu, Jia
    Sheng, Yao
    Liu, Junyu
    Li, Haoyu
    Guo, Mingzhang
    Xu, Wentao
    Luo, Yunbo
    Huang, Kunlun
    He, Xiaoyun
    NUTRIENTS, 2022, 14 (09)
  • [42] Effect of κ-carrageenan on glucolipid metabolism and gut microbiota in high-fat diet-fed mice
    Wang, Qiong
    Zhang, Ling
    He, Yalun
    Zeng, Lirong
    He, Juncheng
    Yang, Yang
    Zhang, Tongcun
    JOURNAL OF FUNCTIONAL FOODS, 2021, 86
  • [43] Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes
    Zhou, Xiao-Li
    Yan, Bei-Bei
    Xiao, Ying
    Zhou, Yi-Ming
    Liu, Tai-Yi
    FOOD AND CHEMICAL TOXICOLOGY, 2018, 119 : 296 - 301
  • [44] Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice
    Gan, Linyao
    Han, Jing
    Li, Chenyao
    Tang, Jing
    Wang, Xuebing
    Ma, Yue
    Chen, Yefu
    Xiao, Dongguang
    Guo, Xuewu
    FOOD BIOSCIENCE, 2023, 53
  • [45] Lemon fermented products prevent obesity in high-fat diet-fed rats by modulating lipid metabolism and gut microbiota
    Chih-Chung Wu
    Yu-Wen Huang
    Chih-Yao Hou
    Ya-Ting Chen
    Cheng-Di Dong
    Chiu-Wen Chen
    Reeta Rani Singhania
    Jie-Yin Leang
    Shu-Ling Hsieh
    Journal of Food Science and Technology, 2023, 60 : 1036 - 1044
  • [46] A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota
    Zhao, Le
    Zhang, Qi
    Ma, Weini
    Tian, Feng
    Shen, Hongyi
    Zhou, Mingmei
    FOOD & FUNCTION, 2017, 8 (12) : 4644 - 4656
  • [47] Lemon fermented products prevent obesity in high-fat diet-fed rats by modulating lipid metabolism and gut microbiota
    Wu, Chih-Chung
    Huang, Yu-Wen
    Hou, Chih-Yao
    Chen, Ya-Ting
    Dong, Cheng-Di
    Chen, Chiu-Wen
    Singhania, Reeta Rani
    Leang, Jie-Yin
    Hsieh, Shu-Ling
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2023, 60 (03): : 1036 - 1044
  • [48] Glycodeoxycholic acid alleviates central precocious puberty by modulating gut microbiota and metabolites in high-fat diet-fed female rats
    Nan Wu
    Xin Jiang
    Yanan Liu
    Meilu Zhang
    Min Yue
    Fei Chen
    Wei Wu
    Ning Li
    Qinghua Wang
    Lei Zhang
    Cellular and Molecular Life Sciences, 82 (1)
  • [49] Galantamine Alleviates Inflammation and Other Obesity-Associated Complications High-Fat Diet-Fed Mice
    Satapathy, Sanjaya K.
    Ochani, Mahendar
    Dancho, Meghan
    Hudson, LaQueta K.
    Rosas-Ballina, Mauricio
    Valdes-Ferrer, Sergio I.
    Olofsson, Peder S.
    Harris, Yael Tobi
    Roth, Jesse
    Chavan, Sangeeta
    Tracey, Kevin J.
    Pavlov, Valentin A.
    MOLECULAR MEDICINE, 2011, 17 (7-8) : 599 - 606
  • [50] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    NUTRIENTS, 2020, 12 (06) : 1 - 15