A note on stability and fractal dimension of bivariate α-fractal functions

被引:6
|
作者
Agrawal, V. [1 ]
Som, T. [1 ]
Verma, S. [2 ]
机构
[1] IIT BHU, Dept Math, Varanasi 221005, India
[2] IIIT Allahabad, Dept Appl Sci, Allahabad 211015, India
关键词
Fractal interpolation surfaces; Bivariate alpha-fractal functions; Continuous dependence; Box dimension; Oscillation spaces; INTERPOLATION FUNCTIONS; MINKOWSKI DIMENSION; CONSTRUCTION; PHYSIOLOGY; SURFACES;
D O I
10.1007/s11075-022-01490-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the continuous dependence of the so-called (bivariate) alpha -fractal function on the parameters such as the scaling function alpha net delta of rectangular grid, and the base function S involved in its construction. Furthermore, we establish some results regarding its dimension.
引用
收藏
页码:1811 / 1833
页数:23
相关论文
共 50 条
  • [21] ON THE BOX DIMENSION FOR A CLASS OF NONAFFINE FRACTAL INTERPOLATION FUNCTIONS
    L.Dalla
    V.Drakopoulos
    M.Prodromou
    AnalysisinTheoryandApplications, 2003, (03) : 220 - 233
  • [22] Fractal Analysis and Fractal Dimension in Materials Chemistry
    Dobrescu, Gianina
    Papa, Florica
    State, Razvan
    FRACTAL AND FRACTIONAL, 2024, 8 (10)
  • [23] A NOTE ON FRACTAL DIMENSION OF RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
    Chandra, Subhash
    Abbas, Syed
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [24] Nonlinear bivariate fractal interpolation function on grids
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 351 - 358
  • [25] A NEW NONLINEAR BIVARIATE FRACTAL INTERPOLATION FUNCTION
    Ri, Song-Il
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [26] A note on fractal dimensions of graphs of certain continuous functions
    Liu, Peizhi
    Yu, Binyan
    Liang, Yongshun
    CHAOS SOLITONS & FRACTALS, 2024, 188
  • [27] Box dimension and fractional integral of linear fractal interpolation functions
    Ruan, Huo-Jun
    Su, Wei-Yi
    Yao, Kui
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 187 - 197
  • [28] On bivariate fractal interpolation for countable data and associated nonlinear fractal operator
    Pandey, Kshitij Kumar
    Secelean, Nicolae Adrian
    Viswanathan, Puthan Veedu
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [29] EXISTENCE AND BOX DIMENSION OF GENERAL RECURRENT FRACTAL INTERPOLATION FUNCTIONS
    Ruan, Huo-Jun
    Xiao, Jian-Ci
    Yang, Bing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 278 - 290
  • [30] Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension
    Bouboulis, P.
    Dalla, Leoni
    Drakopoulos, V.
    JOURNAL OF APPROXIMATION THEORY, 2006, 141 (02) : 99 - 117