Defect engineering enabling p-type Mo(S,Se)2:TM (TM = V, Nb, Ta) towards high-efficiency kesterite solar cells

被引:18
|
作者
Fu, Junjie [1 ,3 ]
Zhang, Afei [2 ]
Kou, Dongxing [1 ]
Xiao, Zewen [2 ]
Zhou, Wenhui [1 ]
Zhou, Zhengji [1 ]
Yuan, Shengjie [1 ]
Qi, Yafang [1 ]
Zheng, Zhi [3 ]
Wu, Sixin [1 ]
机构
[1] Henan Univ, Natl & Local Joint Engn Res Ctr High Efficiency Di, Collaborat Innovat Ctr Nano Funct Mat & Applicat, Sch Mat Sci & Engn,Key Lab Special Funct Mat,Minis, Kaifeng 475004, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Xuchang Univ, Inst Surface Micro & Nano Mat, Coll Adv Mat & Energy, Key Lab Micronano Energy Storage & Convers Mat He, Xuchang 461000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Kesterite; Cu2ZnSn(S; Se)4; Thin film solar cells; Interface recombination; Back contact; BACK CONTACT; INTERFACE; LAYER; CHEMISTRY; INSIGHTS; ANODE; GAP; AG; GE;
D O I
10.1016/j.cej.2023.141348
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
One important issue limiting the development of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells is the severe recombination loss at CZTSSe/Mo(S,Se)2/Mo back contact, primarily arising from the non-matched potential barrier and inferior electric contact between absorber and weak n-type Mo(S,Se)2 interfacial layer. It is expected that a p-type Mo(S,Se)2 can effectively improve the hole extraction and enhance the device performance. In this work, we propose a plausible direction to build up an electrically benign back surface field by in-situ doping Mo(S,Se)2 with group VB elements (TM = V, Nb and Ta). It is turned out that the generated VMo, NbMo, or TaMo shallow acceptors could convert Mo(S,Se)2 from weak n-type to p-type conductivity and increase its work function (WF) and hole concentration. With the contact of p-type absorber (WF,absorber < WF,Mo(S,Se)2), a benign ohmic contact with favorable downward band bending is formed, thereby accelerating the holes extraction and minimizing interface recombination loss. With significant gains in open-circuit voltage (Voc) and fill factor (FF), the Mo(S, Se)2:Ta device finally increases the efficiency from 10.82 % to 12.72 %. This convenient in-situ Mo(S,Se)2 doping strategy is different from previous complicated or unstable cases and should serve as a basis for high-quality back contact engineering in kesterite photovoltaics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Defects in kesterite materials towards high-efficiency solar cells: origin, impact, characterization, and engineering
    Wang, Lijing
    Ban, Jintang
    Han, Litao
    Zhou, Zhengji
    Zhou, Wenhui
    Kou, Dongxing
    Meng, Yuena
    Qi, Yafang
    Yuan, Shengjie
    Wu, Sixin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (38) : 25643 - 25677
  • [2] Towards high-efficiency industrial p-type mono-like Si PERC solar cells
    Lv, Y.
    Zhuang, Y. F.
    Wang, W. J.
    Wei, W. W.
    Sheng, J.
    Zhang, S.
    Shen, W. Z.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 204 (204)
  • [3] High-Efficiency (LixCu1-x)2ZnSn(S,Se)4 Kesterite Solar Cells with Lithium Alloying
    Cabas-Vidani, Antonio
    Haass, Stefan G.
    Andres, Christian
    Caballero, Raquel
    Figi, Renato
    Schreiner, Claudia
    Marquez, Jose A.
    Hages, Charles
    Unold, Thomas
    Bleiner, Davide
    Tiwari, Ayodhya N.
    Romanyuk, Yaroslav E.
    ADVANCED ENERGY MATERIALS, 2018, 8 (34)
  • [4] Ga-doped Czochralski silicon with rear p-type polysilicon passivating contact for high-efficiency p-type solar cells
    Zhi, Yuyan
    Zheng, Jingming
    Liao, Mingdun
    Wang, Wei
    Liu, Zunke
    Ma, Dian
    Feng, Mengmeng
    Lu, Linna
    Yuan, Shengzhao
    Wan, Yimao
    Yan, Baojie
    Wang, Yuming
    Chen, Hui
    Yao, Meiyi
    Zeng, Yuheng
    Ye, Jichun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 230
  • [5] P-type versus n-type silicon wafers: Prospects for high-efficiency commercial silicon solar cells
    Cotter, J. E.
    Guo, J. H.
    Cousins, P. J.
    Abbott, M. D.
    Chen, F. W.
    Fisher, K. C.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) : 1893 - 1901
  • [6] Control of electronic structure in Cu(In, Ga)(S, Se)2 for high-efficiency solar cells
    Maeda, Tsuyoshi
    Nakanishi, Ryo
    Yanagita, Mizuto
    Wada, Takahiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SG)
  • [7] Development of high-efficiency industrial p-type multi-crystalline PERC solar cells with efficiency greater than 21%
    Deng, Weiwei
    Ye, Feng
    Xiong, Zhen
    Chen, Daming
    Guo, Wanwu
    Chen, Yifeng
    Yang, Yang
    Altermatt, Pietro P.
    Feng, Zhiqiang
    Verlinden, Pierre J.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2016), 2016, 92 : 721 - 729
  • [8] Comment on "towards high-efficiency industrial p-type mono-like Si PERC solar cells" [solar energy materials & solar cells volume 204, January 2020, 110202]
    Abenante, Luigi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 221
  • [9] High-Efficiency Nanoparticle Solution-Processed Cu(In,Ga)(S,Se)2 Solar Cells
    Eeles, Alexander
    Arnou, Panagiota
    Bowers, Jake W.
    Walls, John M.
    Whitelegg, Stephen
    Kirkham, Paul
    Allen, Cary
    Stubbs, Stuart
    Liu, Zugang
    Masala, Ombretta
    Newman, Christopher
    Pickett, Nigel
    IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (01): : 288 - 292
  • [10] A Review of Carrier Transport in High-Efficiency Sb2(S,Se)3 Solar Cells
    Zhao, Yuqi
    Chen, Xueling
    Li, Jianmin
    Xiao, Xudong
    SOLAR RRL, 2023, 7 (23)