Mechanisms of Acquired Resistance and Tolerance to EGFR Targeted Therapy in Non-Small Cell Lung Cancer

被引:52
作者
Chhouri, Houssein [1 ]
Alexandre, David [1 ]
Grumolato, Luca [1 ]
机构
[1] Univ Rouen Normandie, Inserm, NorDiC UMR 1239, F-76000 Rouen, France
关键词
non-small cell lung cancer; targeted therapy; EGFR-TKI; drug resistance; drug tolerant persister cells; cellular barcoding; OPEN-LABEL; 1ST-LINE TREATMENT; KINASE INHIBITORS; ADVANCED NSCLC; MUTATION; CHEMOTHERAPY; OSIMERTINIB; ERLOTINIB; STATE; MANAGEMENT;
D O I
10.3390/cancers15020504
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Lung cancer is the major cause of cancer-related deaths worldwide. The development of targeted therapies has dramatically improved the outcome of lung cancer patients. However, despite an initial response, tumors almost invariably relapse as a result of acquired resistance. In this review, we discuss how lung cancer cells become resistant or tolerant to targeted therapy. Non-small cell lung cancers (NSCLC) harboring activating mutations of the epidermal growth factor receptor (EGFR) are treated with specific tyrosine kinase inhibitors (EGFR-TKIs) of this receptor, resulting in clinically responses that can generally last several months. Unfortunately, EGFR-targeted therapy also favors the emergence of drug tolerant or resistant cells, ultimately resulting in tumor relapse. Recently, cellular barcoding strategies have arisen as a powerful tool to investigate the clonal evolution of these subpopulations in response to anti-cancer drugs. In this review, we provide an overview of the currently available treatment options for NSCLC, focusing on EGFR targeted therapy, and discuss the common mechanisms of resistance to EGFR-TKIs. We also review the characteristics of drug-tolerant persister (DTP) cells and the mechanistic basis of drug tolerance in EGFR-mutant NSCLC. Lastly, we address how cellular barcoding can be applied to investigate the response and the behavior of DTP cells upon EGFR-TKI treatment.
引用
收藏
页数:18
相关论文
共 114 条
[1]   Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study [J].
Ahn, Myung-Ju ;
Han, Ji-Youn ;
Lee, Ki Hyeong ;
Kim, Sang-We ;
Kim, Dong-Wan ;
Lee, Yun-Gyoo ;
Cho, Eun Kyung ;
Kim, Joo-Hang ;
Lee, Gyeong-Won ;
Lee, Jong-Seok ;
Min, Young Joo ;
Kim, Jin-Soo ;
Lee, Sung Sook ;
Kim, Hye Ryun ;
Hong, Min Hee ;
Ahn, Jin Seok ;
Sun, Jong-Mu ;
Kim, Heung Tae ;
Lee, Dae Ho ;
Kim, Sohee ;
Cho, Byoung Chul .
LANCET ONCOLOGY, 2019, 20 (12) :1681-1690
[2]   Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC [J].
Arasada, Rajeswara Rao ;
Shilo, Konstantin ;
Yamada, Tadaaki ;
Zhang, Jianying ;
Yano, Seiji ;
Ghanem, Rashelle ;
Wang, Walter ;
Takeuchi, Shinji ;
Fukuda, Koji ;
Katakami, Nobuyuki ;
Tomii, Keisuke ;
Ogushi, Fumitaka ;
Nishioka, Yasuhiko ;
Talabere, Tiffany ;
Misra, Shrilekha ;
Duan, Wenrui ;
Fadda, Paolo ;
Rahman, Mohammad A. ;
Nana-Sinkam, Patrick ;
Evans, Jason ;
Amann, Joseph ;
Tchekneva, Elena E. ;
Dikov, Mikhail M. ;
Carbone, David P. .
NATURE COMMUNICATIONS, 2018, 9
[3]   Studying clonal dynamics in response to cancer therapy using high-complexity barcoding [J].
Bhang, Hyo-eun C. ;
Ruddy, David A. ;
Radhakrishna, Viveksagar Krishnamurthy ;
Caushi, Justina X. ;
Zhao, Rui ;
Hims, Matthew M. ;
Singh, Angad P. ;
Kao, Iris ;
Rakiec, Daniel ;
Shaw, Pamela ;
Balak, Marissa ;
Raza, Alina ;
Ackley, Elizabeth ;
Keen, Nicholas ;
Schlabach, Michael R. ;
Palmer, Michael ;
Leary, Rebecca J. ;
Chiang, Derek Y. ;
Sellers, William R. ;
Michor, Franziska ;
Cooke, Vesselina G. ;
Korn, Joshua M. ;
Stegmeier, Frank .
NATURE MEDICINE, 2015, 21 (05) :440-U207
[4]   Single-cell mapping of lineage and identity in direct reprogramming [J].
Biddy, Brent A. ;
Kong, Wenjun ;
Kamimoto, Kenji ;
Guo, Chuner ;
Waye, Sarah E. ;
Sun, Tao ;
Morris, Samantha A. .
NATURE, 2018, 564 (7735) :219-+
[5]   Clonal tracking using embedded viral barcoding and high-throughput sequencing [J].
Bramlett, Charles ;
Jiang, Du ;
Nogalska, Anna ;
Eerdeng, Jiya ;
Contreras, Jorge ;
Lu, Rong .
NATURE PROTOCOLS, 2020, 15 (04) :1436-1458
[6]   Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery [J].
Burslem, George M. ;
Crews, Craig M. .
CELL, 2020, 181 (01) :102-114
[7]   Identifying transcriptional programs underlying cancer drug response with TraCe-seq [J].
Chang, Matthew T. ;
Shanahan, Frances ;
Thi Thu Thao Nguyen ;
Staben, Steven T. ;
Gazzard, Lewis ;
Yamazoe, Sayumi ;
Wertz, Ingrid E. ;
Piskol, Robert ;
Yang, Yeqing Angela ;
Modrusan, Zora ;
Haley, Benjamin ;
Evangelista, Marie ;
Malek, Shiva ;
Foster, Scott A. ;
Ye, Xin .
NATURE BIOTECHNOLOGY, 2022, 40 (01) :86-+
[8]   Non-small-cell lung cancers: a heterogeneous set of diseases [J].
Chen, Zhao ;
Fillmore, Christine M. ;
Hammerman, Peter S. ;
Kim, Carla F. ;
Wong, Kwok-Kin .
NATURE REVIEWS CANCER, 2014, 14 (08) :535-546
[9]   Advancing targeted protein degradation for cancer therapy [J].
Dale, Brandon ;
Cheng, Meng ;
Park, Kwang-Su ;
Kaniskan, H. Umit ;
Xiong, Yue ;
Jin, Jian .
NATURE REVIEWS CANCER, 2021, 21 (10) :638-654
[10]   The pivotal role of pathology in the management of lung cancer [J].
Davidson, Morgan R. ;
Gazdar, Adi F. ;
Clarke, Belinda E. .
JOURNAL OF THORACIC DISEASE, 2013, 5 :S463-S478