INVERSE TRANSMISSION EIGENVALUE PROBLEM FOR FIXED ANGULAR MOMENTUM

被引:1
|
作者
Xu, Xin-Jian [1 ]
Yang, Chuan-Fu [1 ]
Xu, Xiao-Chuan [2 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Math, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Interior transmission eigenvalue; radial Schrodinger operator; Bessel operator; inverse spectral problem; UNIQUENESS;
D O I
10.3934/ipi.2022039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of the interior transmission eigenvalue problem for spherically stratified media with fixed angular-momentum quantum number l. Under the case integral(1)(0) root rho(r)dr <= 1, we show that a knowledge of all the transmission eigenvalues for l uniquely determine the refraction index rho(r) on [0, 1]. And under the case integral(1)(0) root rho(r)dr > 1, we show that all the transmission eigenvalues for fixed l with a partial information of the refraction index rho(r) imply the uniqueness of rho(r) on [0, 1].
引用
收藏
页码:263 / 274
页数:12
相关论文
共 50 条
  • [1] SCATTERING AT LOW ENERGIES AND INVERSE PROBLEM AT FIXED ANGULAR-MOMENTUM
    LAMBERT, F
    CORBELLA, O
    THOME, ZD
    NUCLEAR PHYSICS B, 1975, B 90 (02) : 267 - 284
  • [2] PHASE PROBLEM IN CRYSTALLOGRAPHY AS THE ANGULAR MOMENTUM EIGENVALUE PROBLEM
    Bhanumoorthy, P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2002, 58 : C80 - C80
  • [3] On an open question in the inverse transmission eigenvalue problem
    Buterin, S. A.
    Yang, C-F
    Yurko, V. A.
    INVERSE PROBLEMS, 2015, 31 (04)
  • [4] A computational method for the inverse transmission eigenvalue problem
    Gintides, Drossos
    Pallikarakis, Nikolaos
    INVERSE PROBLEMS, 2013, 29 (10)
  • [5] Reconstruction for a class of the inverse transmission eigenvalue problem
    Wang, Yu Ping
    Zhao, Wenju
    Shieh, Chung Tsun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6660 - 6671
  • [6] Inverse spectral analysis for the transmission eigenvalue problem
    Wei, Guangsheng
    Xu, Hong-Kun
    INVERSE PROBLEMS, 2013, 29 (11)
  • [7] On a regularization approach to the inverse transmission eigenvalue problem
    Buterinl, S. A.
    Choque-Rivero, A. E.
    Kuznetsova, M. A.
    INVERSE PROBLEMS, 2020, 36 (10)
  • [8] Novel Outlook on the Eigenvalue Problem for the Orbital Angular Momentum Operator
    Japaridze, George
    Khelashvili, Anzor
    Turashvili, Koba
    PHYSICS, 2022, 4 (02): : 647 - 658
  • [10] On a local solvability and stability of the inverse transmission eigenvalue problem
    Bondarenko, Natalia
    Buterin, Sergey
    INVERSE PROBLEMS, 2017, 33 (11)