PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration

被引:5
|
作者
Wieder, Cecilia [1 ]
Cooke, Juliette [2 ]
Frainay, Clement [2 ]
Poupin, Nathalie [2 ]
Bowler, Russell [3 ]
Jourdan, Fabien [4 ]
Kechris, Katerina J. [5 ]
Lai, Rachel P. J. [6 ]
Ebbels, Timothy [1 ]
机构
[1] Imperial Coll London, Fac Med, Dept Metab Digest & Reprod, Div Syst Med,Sect Bioinformat, London, England
[2] Univ Toulouse, INRAE, Toxalim Res Ctr Food Toxicol, ENVT,INP Purpan,UPS, Toulouse, France
[3] Natl Jewish Hlth, Denver, CO USA
[4] Natl Infrastruct Metabol & Flux, MetaboHUB Metatoul, Toulouse, France
[5] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO USA
[6] Imperial Coll London, Fac Med, Dept Infect Dis, London, England
基金
美国国家卫生研究院; 英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
74;
D O I
10.1371/journal.pcbi.1011814
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on pathways, designed to exploit knowledge of biological systems and thus provide interpretable models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-omics datasets from the molecular to the pathway-level, and applies a predictive single-view or multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by their contribution to the outcome prediction, the contribution of each omics layer, and the importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and interpretation of complex high-dimensional multi-omics datasets. PathIntegrate is available as an open-source Python package. Omics data, which provides a readout of the levels of molecules such as genes, proteins, and metabolites in a sample, is frequently generated to study biological processes and perturbations within an organism. Combining multiple omics data types can provide a more comprehensive understanding of the underlying biology, making it possible to piece together how different molecules interact. There exist many software packages designed to integrate multi-omics data, but interpreting the resulting outputs remains a challenge. Placing molecules into the context of biological pathways enables us to better understand their collective functions and understand how they may contribute to the condition under study. We have developed PathIntegrate, a pathway-based multi-omics integration tool which helps integrate and interpret multi-omics data in a single step using machine learning. By integrating data at the pathway rather than the molecular level, the relationships between molecules in pathways can be strengthened and more readily identified. PathIntegrate is demonstrated on Chronic Obstructive Pulmonary Disease and COVID-19 metabolomics, proteomics, and transcriptomics datasets, showcasing its ability to efficiently extract perturbed multi-omics pathways from large-scale datasets.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration
    Wang, Ziqiao
    Wei, Peng
    BIOINFORMATICS, 2020, 36 (22-23) : 5439 - 5447
  • [22] Multi-omics data integration by generative adversarial network
    Ahmed, Khandakar Tanvir
    Sun, Jiao
    Cheng, Sze
    Yong, Jeongsik
    Zhang, Wei
    BIOINFORMATICS, 2022, 38 (01) : 179 - 186
  • [23] Prospects and challenges of multi-omics data integration in toxicology
    Sebastian Canzler
    Jana Schor
    Wibke Busch
    Kristin Schubert
    Ulrike E. Rolle-Kampczyk
    Hervé Seitz
    Hennicke Kamp
    Martin von Bergen
    Roland Buesen
    Jörg Hackermüller
    Archives of Toxicology, 2020, 94 : 371 - 388
  • [24] A survey on data integration for multi-omics sample clustering
    Lovino, Marta
    Randazzo, Vincenzo
    Ciravegna, Gabriele
    Barbiero, Pietro
    Ficarra, Elisa
    Cirrincione, Giansalvo
    NEUROCOMPUTING, 2022, 488 : 494 - 508
  • [25] Integration of Multi-Omics Data to Identify Cancer Biomarkers
    Li, Peng
    Sun, Bo
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)
  • [26] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14
  • [27] Methods for the integration of multi-omics data: mathematical aspects
    Matteo Bersanelli
    Ettore Mosca
    Daniel Remondini
    Enrico Giampieri
    Claudia Sala
    Gastone Castellani
    Luciano Milanesi
    BMC Bioinformatics, 17
  • [28] Optimizing network propagation for multi-omics data integration
    Charmpi, Konstantina
    Chokkalingam, Manopriya
    Johnen, Ronja
    Beyer, Andreas
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [29] ‘Multi-omics’ data integration: applications in probiotics studies
    Iliya Dauda Kwoji
    Olayinka Ayobami Aiyegoro
    Moses Okpeku
    Matthew Adekunle Adeleke
    npj Science of Food, 7
  • [30] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17