Machine intelligence-accelerated discovery of all-natural plastic substitutes

被引:37
作者
Chen, Tianle [1 ]
Pang, Zhenqian [2 ]
He, Shuaiming [1 ]
Li, Yang [1 ]
Shrestha, Snehi [1 ]
Little, Joshua M. [1 ]
Yang, Haochen [1 ]
Chung, Tsai-Chun [1 ]
Sun, Jiayue [3 ]
Whitley, Hayden Christopher [1 ]
Lee, I-Chi [4 ]
Woehl, Taylor J. [1 ,3 ]
Li, Teng [2 ]
Hu, Liangbing [5 ]
Chen, Po-Yen [1 ,6 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem & Biochem, College Pk, MD USA
[4] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[5] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[6] Maryland Robot Ctr, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
CELLULOSE; NANOCOMPOSITES; BIOPLASTICS; STRENGTH; WASTE;
D O I
10.1038/s41565-024-01635-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
One possible solution against the accumulation of petrochemical plastics in natural environments is to develop biodegradable plastic substitutes using natural components. However, discovering all-natural alternatives that meet specific properties, such as optical transparency, fire retardancy and mechanical resilience, which have made petrochemical plastics successful, remains challenging. Current approaches still rely on iterative optimization experiments. Here we show an integrated workflow that combines robotics and machine learning to accelerate the discovery of all-natural plastic substitutes with programmable optical, thermal and mechanical properties. First, an automated pipetting robot is commanded to prepare 286 nanocomposite films with various properties to train a support-vector machine classifier. Next, through 14 active learning loops with data augmentation, 135 all-natural nanocomposites are fabricated stagewise, establishing an artificial neural network prediction model. We demonstrate that the prediction model can conduct a two-way design task: (1) predicting the physicochemical properties of an all-natural nanocomposite from its composition and (2) automating the inverse design of biodegradable plastic substitutes that fulfils various user-specific requirements. By harnessing the model's prediction capabilities, we prepare several all-natural substitutes, that could replace non-biodegradable counterparts as exhibiting analogous properties. Our methodology integrates robot-assisted experiments, machine intelligence and simulation tools to accelerate the discovery and design of eco-friendly plastic substitutes starting from building blocks taken from the generally-recognized-as-safe database. An integrated workflow that uses robotics and machine learning to discover all-natural plastic substitutes with programmable properties is presented.
引用
收藏
页码:782 / 791
页数:13
相关论文
共 63 条
[1]   Chitosan: An Overview of Its Properties and Applications [J].
Aranaz, Inmaculada ;
Alcantara, Andres R. ;
Concepcion Civera, Maria ;
Arias, Concepcion ;
Elorza, Begona ;
Heras Caballero, Angeles ;
Acosta, Niuris .
POLYMERS, 2021, 13 (19)
[2]  
Ashby M. F., 2021, MAT SELECTION MECH D
[3]   Seaweed-based cellulose: Applications, and future perspectives [J].
Baghel, Ravi S. ;
Reddy, C. R. K. ;
Singh, Ravindra Pal .
CARBOHYDRATE POLYMERS, 2021, 267
[4]   Direct Transformation of Edible Vegetable Waste into Bioplastics [J].
Bayer, Ilker S. ;
Guzman-Puyol, Susana ;
Heredia-Guerrero, Jose Alejandro ;
Ceseracciu, Luca ;
Pignatelli, Francesca ;
Ruffilli, Roberta ;
Cingolani, Roberto ;
Athanassiou, Athanassia .
MACROMOLECULES, 2014, 47 (15) :5135-5143
[5]  
Cakir S., 2018, MAT SCI ADV COMPOS M, V2, P1, DOI [10.18063/msacm.v2i1.607, DOI 10.18063/MSACM.V2I1.607]
[6]   Crumpling and Unfolding of Montmorillonite Hybrid Nanocoatings as Stretchable Flame-Retardant Skin [J].
Chang, Ting-Hsiang ;
Tian, Yuan ;
Wee, Daniel L. Y. ;
Ren, Hongliang ;
Chen, Po-Yen .
SMALL, 2018, 14 (21)
[7]   COVID-19 Government Response Event Dataset (CoronaNet v.1.0) [J].
Cheng, Cindy ;
Barcelo, Joan ;
Hartnett, Allison Spencer ;
Kubinec, Robert ;
Messerschmidt, Luca .
NATURE HUMAN BEHAVIOUR, 2020, 4 (07) :756-+
[8]   High-performance stretchable conductive nanocomposites: materials, processes, and device applications [J].
Choi, Suji ;
Han, Sang Ihn ;
Kim, Dokyoon ;
Hyeon, Taeghwan ;
Kim, Dae-Hyeong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (06) :1566-1595
[9]   Machine Learning and Artificial Intelligence in Physiologically Based Pharmacokinetic Modeling [J].
Chou, Wei-Chun ;
Lin, Zhoumeng .
TOXICOLOGICAL SCIENCES, 2023, 191 (01) :1-14
[10]   Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling [J].
Dave, Adarsh ;
Mitchell, Jared ;
Burke, Sven ;
Lin, Hongyi ;
Whitacre, Jay ;
Viswanathan, Venkatasubramanian .
NATURE COMMUNICATIONS, 2022, 13 (01)