Bayesian relative composite quantile regression with ordinal longitudinal data and some case studies

被引:1
|
作者
Tian, Yu-Zhu [1 ,2 ]
Wu, Chun-Ho [3 ]
Tang, Man-Lai [4 ,5 ,6 ]
Tian, Mao-Zai [7 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou, Peoples R China
[2] Gansu Prov Res Ctr Basic Disciplines Math & Stat, Lanzhou, Peoples R China
[3] Hang Seng Univ Hong Kong, Sch Decis Sci, Hong Kong, Peoples R China
[4] Univ Hertfordshire, Ctr Data Innovat Res, Hatfield, England
[5] Univ Hertfordshire, Dept Phys Astron & Math, Hatfield, England
[6] Univ Hertfordshire, Sch Phys Engn & Comp Sci, Hatfield, England
[7] Renmin Univ China, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Ordinal longitudinal; Relative CQR; MCMC sampling; Cut-points; L-1/2; regularization; Psychiatric data; ADAPTIVE LASSO; MODEL; SELECTION;
D O I
10.1080/00949655.2024.2335399
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In real applied fields such as clinical medicine, environmental sciences, psychology as well as economics, we often encounter the task of conducting statistical inference for longitudinal data with ordinal responses. The traditional methods of longitudinal data analysis are often inclined to model continuous responses, which are no longer suitable for such ordinal data. Logistic regression and probit regression are two considerable methods which are frequently used to model ordinal longitudinal responses. However, such modelling methods just depict the mean feature of latent outcome variable and may produce non-robust results when encountering nor-normal errors or outliers. As a proper alternative of mean regression models, composite quantile regression (CQR) method is usually employed to derive robust estimation. The target of this paper is to investigate the CQR estimation approach for ordinal latent longitudinal model. The joint Bayesian hierarchical model is established and a relative CQR estimation approach is suggested to conduct posterior inference for the considered model. Further, in longitudinal data modelling, excessive predictors may be brought into in the models which result in the decrease of the model prediction precision. Bayesian L-1/2 regularized prior is incorporated into ordinal longitudinal CQR model to conduct variable selection simultaneously. Finally, simulation studies and two ordinal longitudinal data analysis are hired to illustrate the considered method.
引用
收藏
页码:2320 / 2345
页数:26
相关论文
共 50 条
  • [31] Bayesian spatial quantile regression for areal count data, with application on substitute care placements in Texas
    King, Clay
    Song, Joon Jin
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (04) : 580 - 597
  • [32] Bayesian regularized quantile regression: A robust alternative for genome-based prediction of skewed data
    Perez-Rodriguez, Paulino
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    CROP JOURNAL, 2020, 8 (05): : 713 - 722
  • [33] LOCAL COMPOSITE QUANTILE REGRESSION SMOOTHING: A FLEXIBLE DATA STRUCTURE AND CROSS-VALIDATION
    Huang, Xiao
    Lin, Zhongjian
    ECONOMETRIC THEORY, 2021, 37 (03) : 613 - 631
  • [34] Variable selection and coefficient estimation via composite quantile regression with randomly censored data
    Jiang, Rong
    Qian, Weimin
    Zhou, Zhangong
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) : 308 - 317
  • [35] Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data
    Perez-Rodriguez, Paulino
    Flores-Galarza, Samuel
    Vaquera-Huerta, Humberto
    del Valle-Paniagua, David Hebert
    Montesinos-Lopez, Osval A.
    Crossa, Jose
    PLANT GENOME, 2020, 13 (02)
  • [36] Quantile residual lifetime regression with functional principal component analysis of longitudinal data for dynamic prediction
    Lin, Xiao
    Li, Ruosha
    Yan, Fangrong
    Lu, Tao
    Huang, Xuelin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (04) : 1216 - 1229
  • [37] Bayesian Conway-Maxwell-Poisson (CMP) regression for longitudinal count data
    Alam, Morshed
    Gwon, Yeongjin
    Meza, Jane
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2023, 30 (03) : 291 - 309
  • [38] SEMIPARAMETRIC PARTIAL LINEAR QUANTILE REGRESSION OF LONGITUDINAL DATA WITH TIME VARYING COEFFICIENTS AND INFORMATIVE OBSERVATION TIMES
    Chen, Xuerong
    Sun, Jianguo
    Liu, Lei
    STATISTICA SINICA, 2015, 25 (04) : 1437 - 1458
  • [39] Surface roughness prediction using multi-source heterogeneous data and Bayesian quantile regression in milling process
    Liu, WeiChao
    Wang, Pengyu
    You, YouPeng
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 95 : 446 - 460
  • [40] Identification of Wiener Model with Internal Noise Using a Cubic Spline Approximation-Bayesian Composite Quantile Regression Algorithm
    Pan, Tianhong
    Guo, Wei
    Song, Ying
    Yin, Fujia
    COMPLEXITY, 2020, 2020