VEHICLE TRACKING AND SPEED ESTIMATION FROM UNMANNED AERIAL VEHICLES USING SEGMENTATION-INITIALISED TRACKERS

被引:0
作者
Tilon, S. M. [1 ]
Nex, F. [1 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
来源
GEOSPATIAL WEEK 2023, VOL. 10-1 | 2023年
关键词
infrastructure monitoring; edge computation; vehicle tracking; segmentation; lightweight;
D O I
10.5194/isprs-annals-X-1-W1-2023-431-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
We propose an effective vehicle tracker and speed estimation method from Unmanned Aerial Vehicles (UAVs) videos that can be deployed on UAV-embedded edge devices. Our tracker uses segmentation-derived vehicle regions to initialise a MOSSE tracker. This enables road operators to make multipurpose use of segmentation outputs while still being able to track the vehicles across frames. The vehicle speed is estimated using flight parameters derived from the UAV's flight computer and the vehicle displacement across frames. We trained CABiNet on the UAVid urban segmentation benchmark dataset and finetuned it on a dataset collected at our study site. A mean Intersection over Union (mIoU) of 0.73 was obtained for the vehicle class. Our segmentation-initialised MOSSE tracker was evaluated on the VisDrone Multi-Object Tracking (MOT) benchmark dataset and compared against traditional methods that utilise object regions for tracker initialisation. Our approach yielded a Multi-Object Tracking Precision (MOTP) of 0.872 compared to 0.830 when using YOLOv4. Our vehicle speed estimations approach was evaluated using a privately collected ground truth vehicle speed dataset. Our approach yielded a Root Mean Square Error (RMSE) between 3.42 and 16.12 km/hr across different flight configurations. Finally, our approach was deployed on an NVIDIA Jetson Xavier NX edge device and could be executed at 8 Frames Per Second (FPS). The results indicate that our approach is a simple yet fast alternative to traditional tracking methods while producing multipurpose segmentation information.
引用
收藏
页码:431 / 437
页数:7
相关论文
共 25 条
[1]   MultEYE: Monitoring System for Real-Time Vehicle Detection, Tracking and Speed Estimation from UAV Imagery on Edge-Computing Platforms [J].
Balamuralidhar, Navaneeth ;
Tilon, Sofia ;
Nex, Francesco .
REMOTE SENSING, 2021, 13 (04) :1-24
[2]  
Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
[3]   Speed Estimation of Multiple Moving Objects from a Moving UAV Platform [J].
Biswas, Debojit ;
Su, Hongbo ;
Wang, Chengyi ;
Stevanovic, Aleksandar .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (06)
[4]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934]
[5]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[6]   YolTrack: Multitask Learning Based Real-Time Multiobject Tracking and Segmentation for Autonomous Vehicles [J].
Chang, Xuepeng ;
Pan, Huihui ;
Sun, Weichao ;
Gao, Huijun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (12) :5323-5333
[7]   Estimating Traffic Intensity Employing Passive Acoustic Radar and Enhanced Microwave Doppler Radar Sensor [J].
Czyzewski, Andrzej ;
Kotus, Jozef ;
Szwoch, Grzegorz .
REMOTE SENSING, 2020, 12 (01)
[8]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[9]   Vision-based vehicle speed estimation: A survey [J].
Fernandez Llorca, David ;
Hernandez Martinez, Antonio ;
Garcia Daza, Ivan .
IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (08) :987-1005
[10]  
Gheorghiu R.A., 2021, P INT C EL COMP ART, DOI [10.1109/ECAI52376.2021.9515014, DOI 10.1109/ECAI52376.2021.9515014]