Machine learning models in phononic metamaterials

被引:9
作者
Liu, Chen-Xu [1 ,2 ]
Yu, Gui-Lan [2 ]
Liu, Zhanli [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp, Dept Engn Mech, Appl Mech Lab, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Sch Civil Engn, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Phononic crystals; Elastic metamaterials; Machine learning; Deep learning; Neural networks; Elastic wave manipulation; NETWORKS; DESIGN;
D O I
10.1016/j.cossms.2023.101133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning opens up a new avenue for advancing the development of phononic crystals and elastic metamaterials. Numerous learning models have been employed and developed to address various challenges in the field of phononic metamaterials. Here, we provide an overview of mainstream machine learning models applied to phononic metamaterials, discuss their capabilities as well as limitations, and explore potential directions for future research.
引用
收藏
页数:10
相关论文
共 54 条
  • [1] Design of acoustic absorbing metasurfaces using a data-driven approach
    Baali, Hamza
    Addouche, Mahmoud
    Bouzerdoum, Abdesselam
    Khelif, Abdelkrim
    [J]. COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [2] A physics-guided machine learning for multifunctional wave control in active metabeams
    Chen, Jiaji
    Chen, Yangyang
    Xu, Xianchen
    Zhou, Weijian
    Huang, Guoliang
    [J]. EXTREME MECHANICS LETTERS, 2022, 55
  • [3] Predicting Band Structures of Two-dimensional Phononic Crystal Slab for Sensor Predesigning Based on Artificial Neural Network
    Chiang, Chi-Tsung
    Tsai, Ying-Pin
    Chang, Wei-Shan
    Hsiao, Fu-Li
    [J]. SENSORS AND MATERIALS, 2023, 35 (08) : 3071 - 3082
  • [4] Dedoncker S, 2024, Arxiv, DOI [arXiv:2309.04177, 10.48550/arXiv.2309.04177, DOI 10.48550/ARXIV.2309.04177]
  • [5] Deep learning approach for designing acoustic absorbing metasurfaces with high degrees of freedom
    Donda, Krupali
    Zhu, Yifan
    Merkel, Aurelien
    Wan, Sheng
    Assouar, Badreddine
    [J]. EXTREME MECHANICS LETTERS, 2022, 56
  • [6] Optimal design of topological waveguides by machine learning
    Du, Zongliang
    Ding, Xianggui
    Chen, Hui
    Liu, Chang
    Zhang, Weisheng
    Luo, Jiachen
    Guo, Xu
    [J]. FRONTIERS IN MATERIALS, 2022, 9
  • [7] Deep convolutional neural networks for eigenvalue problems in mechanics
    Finol, David
    Lu, Yan
    Mahadevan, Vijay
    Srivastava, Ankit
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 118 (05) : 258 - 275
  • [8] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [9] Generative adversarial networks for the design of acoustic metamaterialsa)
    Gurbuz, Caglar
    Kronowetter, Felix
    Dietz, Christoph
    Eser, Martin
    Schmid, Jonas
    Marburg, Steffen
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (02) : 1162 - 1174
  • [10] Inverse design of phononic crystals for anticipated wave propagation by integrating deep learning and semi-analytical approach
    Han, Sihao
    Han, Qiang
    Jiang, Tengjiao
    Li, Chunlei
    [J]. ACTA MECHANICA, 2023, 234 (10) : 4879 - 4897