Novel covalent organic framework/carbon nanotube composites with multiple redox-active sites for high-performance Na storage

被引:21
|
作者
Yuan, Wenyong [1 ]
Weng, Junying [1 ]
Ding, Minghui [1 ]
Jiang, Hui-Mei [2 ]
Fan, Zhiguo [1 ]
Zhao, Zhongjun [2 ]
Zhang, Pengju [1 ]
Xu, Li-Ping [3 ]
Zhou, Pengfei [2 ]
机构
[1] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255000, Peoples R China
[2] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 0255000, Peoples R China
[3] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Rich redox-active groups; Rate capability; Cyclic stability; Sodium storage; AUGMENTED BASIS-SETS; NANOSHEETS; POLYIMIDE; POLYMER; CATHODE;
D O I
10.1016/j.ensm.2023.103142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs) have attracted great attention as promising energy storage materials due to their exceptional crystallinity, designable periodic skeletons, adjustable porous distribution, and ordered accessible nano-channels. However, the reported COF-based cathodes are hindered by unsatisfying capacity and limited rate performance because of their limited utilization of redox-active groups and poorer electrical conductivity. Herein, a novel TP-OH-COF with rich redox-active groups integrated with carbon nanotube (TP-OHCOF@CNT50) is prepared in a one in-situ polycondensation. The few-layered TP-OH-COF with abundant active groups (C--O) wrapped on the surface of CNT can accommodate more Na-ions and shorten the ion/electron diffusion distance. As a sodium-ion batteries (SIBs) cathode, the TP-OH-COF@CNT50 delivers a high specific capacity of 256.4 mAh g-1 at 0.1 A g-1, ultra-long cycling stability (100 % retention after 3000 cycles at 2 A g-1), and excellent rate performance (103 mAh g-1 at 10 A g-1). The combination of in (ex) situ experiments manifests the high reversible surface-dominated Na-storage mechanism and structural stability with lower energy barrier for Na-ions diffusion in TP-OH-COF@CNT50 during Na-ions insertion/extraction. The theoretical calculations unveil the reaction sites and processes of Na-ions storage in TP-OH-COF@CNT50. The results provide an effective strategy for designing new COFs with high energy storage for SIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multiple Accessible Redox-Active Sites in a Robust Covalent Organic Framework for High-Performance Potassium Storage
    Chen, Xue-Ling
    Xie, Mo
    Zheng, Ze-Lin
    Luo, Xiao
    Jin, Hongchang
    Chen, Yan-Fei
    Yang, Guo-Zhan
    Bin, De-Shan
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (09) : 5105 - 5113
  • [2] Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage
    Yang, Xiya
    Gong, Lei
    Liu, Xiaolin
    Zhang, Pianpian
    Li, Bowen
    Qi, Dongdong
    Wang, Kang
    He, Feng
    Jiang, Jianzhuang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (31)
  • [3] Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries
    Zhang, Siqi
    Zhu, You-Liang
    Ren, Siyuan
    Li, Chunguang
    Chen, Xiao-Bo
    Li, Zhenjiang
    Han, Yu
    Shi, Zhan
    Feng, Shouhua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (31) : 17309 - 17320
  • [4] A bipolar-type covalent organic framework on carbon nanotubes with enhanced density of redox-active sites for high-performance lithium-ion batteries
    Xu, Qingmei
    Liu, Zhixin
    Jin, Yucheng
    Yang, Xiya
    Sun, Tingting
    Zheng, Tianyu
    Li, Ning
    Wang, Yuhui
    Li, Tongxuan
    Wang, Kang
    Jiang, Jianzhuang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (15) : 5451 - 5460
  • [5] Covalent functionalization of carbon materials with redox-active organic molecules for energy storage
    Khan, Rizwan
    Nishina, Yuta
    NANOSCALE, 2021, 13 (01) : 36 - 50
  • [6] Multiple active sites in robust covalent organic frameworks for high-performance lithium/sodium/potassium storage
    Ghahari, Afsaneh
    Raissi, Heidar
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [7] Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials
    Wang, Chaojun
    Liu, Fei
    Yan, Shaojiu
    Liu, Chang
    Yu, Zixun
    Chen, Junsheng
    Lyu, Rong
    Wang, Zhuyu
    Xu, Meiying
    Dai, Shenglong
    Chen, Yuan
    Wei, Li
    CARBON, 2022, 190 : 412 - 421
  • [8] Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries
    Ke, Si-Wen
    Li, Wei
    Gao, Lei
    Su, Jian
    Luo, Rengan
    Yuan, Shuai
    He, Ping
    Zuo, Jing-Lin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (05)
  • [9] Redox-active β-ketoenamine-linked covalent organic framework for electrochemical energy storage
    DeBlase, Catherine R.
    Silberstein, Katharine E.
    Thanh-Tam Truong
    Abruna, Hector D.
    Dichtel, William R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [10] Stable Na+ Ion Storage via Dual Active Sites Utilization in Covalent Organic Framework-Carbon Nanotube Composite
    Dey, Anupam
    Pramanik, Atin
    Purohit, Sougat
    Biswas, Sandip
    Chattopadhyay, Shreyasi
    Pieshkov, Tymofii S.
    Sai Gautam, Gopalakrishnan
    Ajayan, Pulickel M.
    Maji, Tapas Kumar
    CHEMSUSCHEM, 2025,