Novel covalent organic framework/carbon nanotube composites with multiple redox-active sites for high-performance Na storage

被引:22
|
作者
Yuan, Wenyong [1 ]
Weng, Junying [1 ]
Ding, Minghui [1 ]
Jiang, Hui-Mei [2 ]
Fan, Zhiguo [1 ]
Zhao, Zhongjun [2 ]
Zhang, Pengju [1 ]
Xu, Li-Ping [3 ]
Zhou, Pengfei [2 ]
机构
[1] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255000, Peoples R China
[2] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 0255000, Peoples R China
[3] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; Rich redox-active groups; Rate capability; Cyclic stability; Sodium storage; AUGMENTED BASIS-SETS; NANOSHEETS; POLYIMIDE; POLYMER; CATHODE;
D O I
10.1016/j.ensm.2023.103142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs) have attracted great attention as promising energy storage materials due to their exceptional crystallinity, designable periodic skeletons, adjustable porous distribution, and ordered accessible nano-channels. However, the reported COF-based cathodes are hindered by unsatisfying capacity and limited rate performance because of their limited utilization of redox-active groups and poorer electrical conductivity. Herein, a novel TP-OH-COF with rich redox-active groups integrated with carbon nanotube (TP-OHCOF@CNT50) is prepared in a one in-situ polycondensation. The few-layered TP-OH-COF with abundant active groups (C--O) wrapped on the surface of CNT can accommodate more Na-ions and shorten the ion/electron diffusion distance. As a sodium-ion batteries (SIBs) cathode, the TP-OH-COF@CNT50 delivers a high specific capacity of 256.4 mAh g-1 at 0.1 A g-1, ultra-long cycling stability (100 % retention after 3000 cycles at 2 A g-1), and excellent rate performance (103 mAh g-1 at 10 A g-1). The combination of in (ex) situ experiments manifests the high reversible surface-dominated Na-storage mechanism and structural stability with lower energy barrier for Na-ions diffusion in TP-OH-COF@CNT50 during Na-ions insertion/extraction. The theoretical calculations unveil the reaction sites and processes of Na-ions storage in TP-OH-COF@CNT50. The results provide an effective strategy for designing new COFs with high energy storage for SIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage
    Yang, Xiya
    Gong, Lei
    Liu, Xiaolin
    Zhang, Pianpian
    Li, Bowen
    Qi, Dongdong
    Wang, Kang
    He, Feng
    Jiang, Jianzhuang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (31)
  • [2] Multiple active sites in robust covalent organic frameworks for high-performance lithium/sodium/potassium storage
    Ghahari, Afsaneh
    Raissi, Heidar
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [3] Covalent functionalization of carbon materials with redox-active organic molecules for energy storage
    Khan, Rizwan
    Nishina, Yuta
    NANOSCALE, 2021, 13 (01) : 36 - 50
  • [4] Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries
    Ke, Si-Wen
    Li, Wei
    Gao, Lei
    Su, Jian
    Luo, Rengan
    Yuan, Shuai
    He, Ping
    Zuo, Jing-Lin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (05)
  • [5] Integrated carbon nanotube and triazine-based covalent organic framework composites for high capacitance performance
    Liu, Lei
    Cui, Di
    Zhang, Shuran
    Xie, Wei
    Yao, Chan
    Xu, Yanhong
    DALTON TRANSACTIONS, 2023, 52 (09) : 2762 - 2769
  • [6] Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage
    Yang, Pan
    Wu, Zhenzhen
    Wang, Shouyue
    Li, Meng
    Chen, Hao
    Qian, Shangshu
    Zheng, Mengting
    Wang, Yun
    Li, Sheng
    Qiu, Jingxia
    Zhang, Shanqing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (49)
  • [7] Double redox-active polyimide-based covalent organic framework induced by lithium ion for boosting high-performance aqueous Zn2+storage
    An, Yafei
    Zhang, Heng
    Geng, Dongxiang
    Fu, Zhijian
    Liu, Ziming
    He, Jing
    Zhao, Yue
    Shi, Minjie
    Yan, Chao
    CHEMICAL ENGINEERING JOURNAL, 2023, 477 (477)
  • [8] Boosting Lithium-Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator
    Xu, Qing
    Zhang, Kailong
    Qian, Jing
    Guo, Yu
    Song, Xiaokai
    Pan, Honglin
    Wang, Di
    Li, Xiaopeng
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (08) : 5793 - 5798
  • [9] Multiple Protophilic Redox-Active Sites in Reticular Organic Skeletons for Superior Proton Storage
    Zhang, Yehui
    Song, Ziyang
    Huang, Qi
    Lv, Yaokang
    Gan, Lihua
    Liu, Mingxian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [10] Activation of redox-active covalent organic frameworks enriched with imine and quinone sites towards high pseudocapacitance
    Ding, Wei
    Liu, Jie
    Ding, Jie
    Xiao, Luyi
    Wang, Yong
    Lv, Li-Ping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002