Action Prediction for Cooperative Exploration in Multi-agent Reinforcement Learning

被引:0
|
作者
Zhang, Yanqiang [1 ]
Feng, Dawei [1 ]
Ding, Bo [1 ]
机构
[1] Natl Univ Def Technol, Natl Lab Parallel & Distributed Proc, Changsha 410073, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2023, PT II | 2024年 / 14448卷
关键词
Multi-agent Systems; Reinforcement Learning; Intrinsic Reward;
D O I
10.1007/978-981-99-8082-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-agent reinforcement learning methods have shown significant progress, however, they continue to exhibit exploration problems in complex and challenging environments. To address the above issue, current research has introduced several exploration-enhanced methods for multi-agent reinforcement learning, they are still faced with the issues of inefficient exploration and low performance in challenging tasks that necessitate complex cooperation among agents. This paper proposes the prediction-action Qmix (PQmix) method, an action prediction-based multi-agent intrinsic reward construction approach. The PQmix method employs the joint local observation of agents and the next joint local observation after executing actions to predict the real joint action of agents. The method calculates the action prediction error as the intrinsic reward to measure the novel of the joint state and encourages agents to actively explore the action and state spaces in the environment. We compare PQmix with strong baselines on the MARL benchmark to validate it. The result of experiments demonstrates that PQmix outperforms the state-of-the-art algorithms on the StarCraft Multi-Agent Challenge (SMAC). In the end, the stability of the method is verified by experiments.
引用
收藏
页码:358 / 372
页数:15
相关论文
共 50 条
  • [1] Phased Continuous Exploration Method for Cooperative Multi-Agent Reinforcement Learning
    Kang, Jie
    Hou, Yaqing
    Zeng, Yifeng
    Chen, Yongchao
    Tong, Xiangrong
    Xu, Xin
    Zhang, Qiang
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1086 - 1091
  • [2] Multi-Agent Reinforcement Learning Algorithm Based on Action Prediction
    童亮
    陆际联
    Journal of Beijing Institute of Technology(English Edition), 2006, (02) : 133 - 137
  • [3] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [4] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [5] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [6] Training Cooperative Agents for Multi-Agent Reinforcement Learning
    Bhalla, Sushrut
    Subramanian, Sriram G.
    Crowley, Mark
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1826 - 1828
  • [7] LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning
    Chen, Zihan
    Luo, Biao
    Hu, Tianmeng
    Xu, Xiaodong
    NEURAL NETWORKS, 2023, 167 : 450 - 459
  • [8] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [9] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [10] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896