Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives

被引:9
作者
Togo, Maria Vittoria [1 ]
Mastrolorito, Fabrizio [1 ]
Orfino, Angelica [1 ]
Graps, Elisabetta Anna [2 ]
Tondo, Anna Rita [1 ]
Altomare, Cosimo Damiano [1 ]
Ciriaco, Fulvio [3 ]
Trisciuzzi, Daniela [1 ]
Nicolotti, Orazio [1 ]
Amoroso, Nicola [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Pharm Pharmaceut Sci, I-70125 Bari, Italy
[2] ARESS Puglia Agenzia Reg Strateg Salute Sociale, Presidenza Reg Puglia, Bari, Italy
[3] Univ Bari Aldo Moro, Dept Chem, Bari, Italy
关键词
Alternative methods; developmental toxicity; explainable artificial intelligence; machine learning models; predictive toxicology; IN-SILICO METHODS; MACHINE LEARNING TECHNIQUES; DRUG DISCOVERY; MULTIOBJECTIVE OPTIMIZATION; COMPUTATIONAL TOXICOLOGY; BIOCONCENTRATION FACTOR; CLASSIFICATION MODELS; ALTERNATIVE METHODS; RISK-ASSESSMENT; RANDOM FOREST;
D O I
10.1080/17425255.2023.2298827
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
IntroductionThe application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being.Areas coveredThis review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies.Expert opinionThe limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
引用
收藏
页码:561 / 577
页数:17
相关论文
共 195 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]   Prediction of Acute Oral Systemic Toxicity Using a Multifingerprint Similarity Approach [J].
Alberga, Domenico ;
Trisciuzzi, Daniela ;
Mansouri, Kamel ;
Mangiatordi, Giuseppe Felice ;
Nicolotti, Orazio .
TOXICOLOGICAL SCIENCES, 2019, 167 (02) :484-495
[3]   Making sense of chemical space network shows signs of criticality [J].
Amoroso, Nicola ;
Gambacorta, Nicola ;
Mastrolorito, Fabrizio ;
Togo, Maria Vittoria ;
Trisciuzzi, Daniela ;
Monaco, Alfonso ;
Pantaleo, Ester ;
Altomare, Cosimo Damiano ;
Ciriaco, Fulvio ;
Nicolotti, Orazio .
SCIENTIFIC REPORTS, 2023, 13 (01)
[4]   Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge [J].
Amoroso, Nicola ;
Diacono, Domenico ;
Fanizzi, Annarita ;
La Rocca, Marianna ;
Monaco, Alfonso ;
Lombardi, Angela ;
Guaragnella, Cataldo ;
Bellotti, Roberto ;
Tangaro, Sabina .
JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 :3-9
[5]  
[Anonymous], SOFTWARE PREDICT TOX
[6]  
[Anonymous], 2018, ICH S6 R1 PRECL SAF
[7]  
[Anonymous], Classification, Labelling and Packaging (CLP) of substances and mixtures
[8]  
[Anonymous], TOX EST SOFTW TOOL T
[9]  
[Anonymous], TOXREFDB REL US FRIE
[10]  
[Anonymous], Caesar