SPIDE: A single cell potency inference method based on the local cell-specific network entropy

被引:0
作者
Zheng, Ruiqing [1 ]
Xu, Ziwei [1 ]
Zeng, Yanping [1 ]
Wang, Edwin [2 ]
Li, Min [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Univ Calgary, Cumming Sch Med, Dept Biochem & Mol Biol, Calgary, AB T2N 4N1, Canada
基金
中国国家自然科学基金;
关键词
Cell differential potency; Network entropy; Cell-specific Network; scRNA-seq data; STEM-CELLS; REGULATORS; DATABASE;
D O I
10.1016/j.ymeth.2023.11.006
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
For a given single cell RNA-seq data, it is critical to pinpoint key cellular stages and quantify cells' differentiation potency along a differentiation pathway in a time course manner. Currently, several methods based on the entropy of gene functions or PPI network have been proposed to solve the problem. Nevertheless, these methods still suffer from the inaccurate interactions and noises originating from scRNA-seq profile. In this study, we proposed a cell potency inference method based on cell-specific network entropy, called SPIDE. SPIDE introduces the local weighted cell-specific network for each cell to maintain cell heterogeneity and calculates the entropy by incorporating gene expression with network structure. In this study, we compared three cell entropy estimation models on eight scRNA-Seq datasets. The results show that SPIDE obtains consistent conclusions with real cell differentiation potency on most datasets. Moreover, SPIDE accurately recovers the continuous changes of potency during cell differentiation and significantly correlates with the stemness of tumor cells in Colorectal cancer. To conclude, our study provides a universal and accurate framework for cell entropy estimation, which deepens our understanding of cell differentiation, the development of diseases and other related biological research.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 44 条
  • [1] Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis
    Bastidas-Ponce, Aimee
    Tritschler, Sophie
    Dony, Leander
    Scheibner, Katharina
    Tarquis-Medina, Marta
    Salinno, Ciro
    Schirge, Silvia
    Burtscher, Ingo
    Boettcher, Anika
    Theis, Fabian J.
    Lickert, Heiko
    Bakhti, Mostafa
    [J]. DEVELOPMENT, 2019, 146 (12):
  • [2] Generalizing RNA velocity to transient cell states through dynamical modeling
    Bergen, Volker
    Lange, Marius
    Peidli, Stefan
    Wolf, F. Alexander
    Theis, Fabian J.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1408 - 1414
  • [3] Stem Cell Pluripotency: A Cellular Trait That Depends on Transcription Factors, Chromatin State and a Checkpoint Deficient Cell Cycle
    Boheler, Kenneth R.
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2009, 221 (01) : 10 - 17
  • [4] The single-cell transcriptional landscape of mammalian organogenesis
    Cao, Junyue
    Spielmann, Malte
    Qiu, Xiaojie
    Huang, Xingfan
    Ibrahim, Daniel M.
    Hill, Andrew J.
    Zhang, Fan
    Mundlos, Stefan
    Christiansen, Lena
    Steemers, Frank J.
    Trapnell, Cole
    Shendure, Jay
    [J]. NATURE, 2019, 566 (7745) : 496 - +
  • [5] MINT: the molecular INTeraction database
    Chatr-aryamontri, Andrew
    Ceol, Arnaud
    Palazzi, Luisa Montecchi
    Nardelli, Giuliano
    Schneider, Maria Victoria
    Castagnoli, Luisa
    Cesareni, Gianni
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 : D572 - D574
  • [6] Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
    Chu, Li-Fang
    Leng, Ning
    Zhang, Jue
    Hou, Zhonggang
    Mamott, Daniel
    Vereide, David T.
    Choi, Jeea
    Kendziorski, Christina
    Stewart, Ron
    Thomson, James A.
    [J]. GENOME BIOLOGY, 2016, 17
  • [7] Molecular, phenotypic, and sample-associated data to describe pluripotent stem cell lines and derivatives
    Daily, Kenneth
    Sui, Shannan J. Ho
    Schriml, Lynn M.
    Dexheimer, Phillip J.
    Salomonis, Nathan
    Schroll, Robin
    Bush, Stacy
    Keddache, Mehdi
    Mayhew, Christopher
    Lotia, Samad
    Perumal, Thanneer M.
    Dang, Kristen
    Pantano, Lorena
    Pico, Alexander R.
    Grassman, Elke
    Nordling, Diana
    Hide, Winston
    Hatzopoulos, Antonis K.
    Malik, Punam
    Cancelas, Jose A.
    Lutzko, Carolyn
    Aronow, Bruce J.
    Omberg, Larsson
    [J]. SCIENTIFIC DATA, 2017, 4
  • [8] De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
    Grun, Dominic
    Muraro, Mauro J.
    Boisset, Jean-Charles
    Wiebrands, Kay
    Lyubimova, Anna
    Dharmadhikari, Gitanjali
    van den Born, Maaike
    van Es, Johan
    Jansen, Erik
    Clevers, Hans
    de Koning, Eelco J. P.
    van Oudenaarden, Alexander
    [J]. CELL STEM CELL, 2016, 19 (02) : 266 - 277
  • [9] SLICE: determining cell differentiation and lineage based on single cell entropy
    Guo, Minzhe
    Bao, Erik L.
    Wagner, Michael
    Whitsett, Jeffrey A.
    Xu, Yan
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (07)
  • [10] IntAct: an open source molecular interaction database
    Hermjakob, H
    Montecchi-Palazzi, L
    Lewington, C
    Mudali, S
    Kerrien, S
    Orchard, S
    Vingron, M
    Roechert, B
    Roepstorff, P
    Valencia, A
    Margalit, H
    Armstrong, J
    Bairoch, A
    Cesareni, G
    Sherman, D
    Apweller, R
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 : D452 - D455