Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping

被引:2
|
作者
Zhu, Shuwei [1 ]
Wang, Wenping [1 ]
Fang, Wei [1 ]
Cui, Meiji [2 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Jiangsu Prov Engn Lab Pattern Recognit & Computat, Wuxi 214122, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Intelligent Mfg, Nanjing 210094, Peoples R China
关键词
multi-omic data; cancer subtyping; multi-view clustering; autoencoder; latent space; data integration; ALGORITHM;
D O I
10.3934/mbe.2023933
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer subtyping (or cancer subtypes identification) based on multi-omics data has played an important role in advancing diagnosis, prognosis and treatment, which triggers the development of advanced multi-view clustering algorithms. However, the high-dimension and heterogeneity of multiomics data make great effects on the performance of these methods. In this paper, we propose to learn the informative latent representation based on autoencoder (AE) to naturally capture nonlinear omic features in lower dimensions, which is helpful for identifying the similarity of patients. Moreover, to take advantage of survival information or clinical information, a multi-omic survival analysis approach is embedded when integrating the similarity graph of heterogeneous data at the multi-omics level. Then, the clustering method is performed on the integrated similarity to generate subtype groups. In the experimental part, the effectiveness of the proposed framework is confirmed by evaluating five different multi-omics datasets, taken from The Cancer Genome Atlas. The results show that AEassisted multi-omics clustering method can identify clinically significant cancer subtypes.
引用
收藏
页码:21098 / 21119
页数:22
相关论文
共 50 条
  • [21] Comprehensive Evaluation of Multi-Omics Clustering Algorithms for Cancer Molecular Subtyping
    Wang, Juan
    Wang, Lingxiao
    Liu, Yi
    Li, Xiao
    Ma, Jie
    Li, Mansheng
    Zhu, Yunping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [22] Interactive gene identification for cancer subtyping based on multi-omics clustering
    Ye, Xiucai
    Shi, Tianyi
    Cui, Yaxuan
    Sakurai, Tetsuya
    METHODS, 2023, 211 : 61 - 67
  • [23] Deep structure integrative representation of multi-omics data for cancer subtyping
    Yang, Bo
    Yang, Yan
    Su, Xueping
    BIOINFORMATICS, 2022,
  • [24] Deep structure integrative representation of multi-omics data for cancer subtyping
    Yang, Bo
    Yang, Yan
    Su, Xueping
    BIOINFORMATICS, 2022, 38 (13) : 3337 - 3342
  • [25] Adaptive latent similarity learning for multi-view clustering
    Xie, Deyan
    Gao, Quanxue
    Wang, Qianqian
    Zhang, Xiangdong
    Gao, Xinbo
    NEURAL NETWORKS, 2020, 121 (121) : 409 - 418
  • [26] Clustering single-cell multi-omics data via graph regularized multi-view ensemble learning
    Chen, Fuqun
    Zou, Guanhua
    Wu, Yongxian
    Ou-Yang, Le
    BIOINFORMATICS, 2024, 40 (04)
  • [27] Learning an enhanced consensus representation for multi-view clustering via latent representation correlation preserving
    Gui, Zhongyan
    Yang, Jing
    Xie, Zhiqiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [28] Learning an enhanced consensus representation for multi-view clustering via latent representation correlation preserving
    Gui, Zhongyan
    Yang, Jing
    Xie, Zhiqiang
    Knowledge-Based Systems, 2022, 253
  • [29] Consensus clustering applied to multi-omics disease subtyping
    Galadriel Brière
    Élodie Darbo
    Patricia Thébault
    Raluca Uricaru
    BMC Bioinformatics, 22
  • [30] Consensus clustering applied to multi-omics disease subtyping
    Briere, Galadriel
    Darbo, Elodie
    Thebault, Patricia
    Uricaru, Raluca
    BMC BIOINFORMATICS, 2021, 22 (01)