Rayleigh-Benard instability in a horizontal porous layer with anomalous diffusion

被引:5
作者
Barletta, A. [1 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Ind Engn, Viale Risorgimento 2, I-40136 Bologna, Italy
关键词
FRACTIONAL DYNAMICS; RANDOM-WALKS; CONVECTION; FLUID; ONSET;
D O I
10.1063/5.0174432
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The analysis of the Rayleigh-B & eacute;nard instability due to the mass diffusion in a fluid-saturated horizontal porous layer is reconsidered. The standard diffusion theory based on the variance of the molecular position growing linearly in time is generalized to anomalous diffusion, where the variance is modeled as a power-law function of time. A model of anomalous diffusion based on a time-dependent mass diffusion coefficient is adopted, together with Darcy's law, for momentum transfer, and the Boussinesq approximation, for the description of the buoyant flow. A linear stability analysis is carried out for a basic state where the solute has a potentially unstable concentration distribution varying linearly in the vertical direction, and the fluid is at rest. It is shown that any, even slight, departure from the standard diffusion process has a dramatic effect on the onset conditions of the instability. This circumstance reveals a strong sensitivity to the anomalous diffusion index. It is shown that subdiffusion yields instability for every positive mass diffusion Rayleigh number, while superdiffusion brings stabilization no matter how large is the Rayleigh number. A discussion of the linear stability analysis based on the Galilei-variant fractional-derivative model of subdiffusion is eventually carried out.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Onset of Darcy-Benard convection using a thermal non-equilibrium model
    Banu, N
    Rees, DAS
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) : 2221 - 2228
  • [2] Local thermal non-equilibrium effects in the Darcy-Benard instability with isoflux boundary conditions
    Barletta, A.
    Rees, D. A. S.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (1-3) : 384 - 394
  • [3] Barletta A., 2019, ROUTES ABSOLUTE INST, DOI [10.1007/978-3-030-06194-4, DOI 10.1007/978-3-030-06194-4]
  • [4] On the Use and Misuse of the Oberbeck-Boussinesq Approximation
    Barletta, Antonio
    Celli, Michele
    Rees, D. Andrew S.
    [J]. PHYSICS, 2023, 5 (01): : 298 - 309
  • [5] The Boussinesq approximation for buoyant flows
    Barletta, Antonio
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2022, 124
  • [6] Continuous time random walks on moving fluids
    Compte, A
    [J]. PHYSICAL REVIEW E, 1997, 55 (06) : 6821 - 6831
  • [7] Fractional dynamics in random velocity fields
    Compte, A
    Caceres, MO
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (15) : 3140 - 3143
  • [8] Analytic approaches of the anomalous diffusion: A review
    dos Santos, Maike A. F.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 124 : 86 - 96
  • [9] Eigenvalue problems for fractional ordinary differential equations
    Duan, Jun-Sheng
    Wang, Zhong
    Liu, Yu-Lu
    Qiu, Xiang
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 46 : 46 - 53
  • [10] LEVY FLIGHT SUPERDIFFUSION: AN INTRODUCTION
    Dubkov, A. A.
    Spagnolo, B.
    Uchaikin, V. V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2649 - 2672