Does Thermal Really Always Matter for RGB-T Salient Object Detection?

被引:57
作者
Cong, Runmin [1 ,2 ,3 ]
Zhang, Kepu [1 ,2 ]
Zhang, Chen [1 ,2 ]
Zheng, Feng [4 ,5 ]
Zhao, Yao [1 ,2 ]
Huang, Qingming [6 ,7 ,8 ]
Kwong, Sam [3 ,9 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Network Technol, Beijing Key Lab Adv Informat Sci, Beijing 100044, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Southern Univ Sci & Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
[5] Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[6] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 101408, Peoples R China
[7] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
[8] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[9] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 51800, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
Task analysis; Decoding; Semantics; Object detection; Location awareness; Lighting; Feature extraction; RGB-T images; salient object detection; global illumination estimation; semantic constraint provider; localization and complementation; FUSION NETWORK;
D O I
10.1109/TMM.2022.3216476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, most of the existing RGB-T SOD models focus on how to perform cross-modality feature fusion, ignoring whether thermal image is really always matter in SOD task. Starting from the definition and nature of this task, this paper rethinks the connotation of thermal modality, and proposes a network named TNet to solve the RGB-T SOD task. In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image, so as to regulate the role played by the two modalities. In addition, considering the role of thermal modality, we set up different cross-modality interaction mechanisms in the encoding phase and the decoding phase. On the one hand, we introduce a semantic constraint provider to enrich the semantics of thermal images in the encoding phase, which makes thermal modality more suitable for the SOD task. On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality. Extensive experiments on three datasets show that the proposed TNet achieves competitive performance compared with 20 state-of-the-art methods.
引用
收藏
页码:6971 / 6982
页数:12
相关论文
共 75 条
[11]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[12]   Going From RGB to RGBD Saliency: A Depth-Guided Transformation Model [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Hou, Junhui ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) :3627-3639
[13]   HSCS: Hierarchical Sparsity Based Co-saliency Detection for RGBD Images [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Huang, Qingming ;
Cao, Xiaochun ;
Ling, Nam .
IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (07) :1660-1671
[14]   Video Saliency Detection via Sparsity-Based Reconstruction and Propagation [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Porikli, Fatih ;
Huang, Qingming ;
Hou, Chunping .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (10) :4819-4831
[15]   Review of Visual Saliency Detection With Comprehensive Information [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Cheng, Ming-Ming ;
Lin, Weisi ;
Huang, Qingming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (10) :2941-2959
[16]   An Iterative Co-Saliency Framework for RGBD Images [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Lin, Weisi ;
Huang, Qingming ;
Cao, Xiaochun ;
Hou, Chunping .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (01) :233-246
[17]   Co-Saliency Detection for RGBD Images Based on Multi-Constraint Feature Matching and Cross Label Propagation [J].
Cong, Runmin ;
Lei, Jianjun ;
Fu, Huazhu ;
Huang, Qingming ;
Cao, Xiaochun ;
Hou, Chunping .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) :568-579
[18]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[19]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698
[20]   Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks [J].
Fan, Deng-Ping ;
Lin, Zheng ;
Zhang, Zhao ;
Zhu, Menglong ;
Cheng, Ming-Ming .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) :2075-2089