Trajectory controllability of neutral stochastic integrodifferential equations with mixed fractional Brownian motion

被引:10
作者
Chalishajar, Dimplekumar [1 ,4 ]
Kasinathan, Ravikumar [2 ]
Kasinathan, Ramkumar [2 ]
Kasinathan, Dhanalakshmi [3 ]
David, John A. [1 ]
机构
[1] Virginia Mil Inst VMI, Dept Appl Math, Lexington, VA USA
[2] PSG Coll Arts & Sci, Dept Math, Coimbatore, India
[3] Deemed be Univ, Gandhigram Rural Inst, Dept Math, Gandhigram 624302, Tamil Nadu, India
[4] Virginia Mil Inst VMI, Dept Appl Math, Mallory Hall, Lexington, VA 24450 USA
关键词
Integrodifferential evolution equations; resolvent operator; controllability; stability; Rosenblatt process; DIFFERENTIAL-EQUATIONS; NULL-CONTROLLABILITY; DRIVEN;
D O I
10.1080/23307706.2023.2271899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work focuses on the existence and trajectory (T-)controllability of mixed fractional Brownian motion (fBm) with the Hurst index $ (\frac {1}{2}, 1) $ (12,1) and neutral stochastic integrodifferential equations (NSIDEs) with deviating argument and fBm. Stochastic integrodifferential equations (SIDEs) are solved in Hilbert space using stochastic analysis, the resolvent operator, and Krasnoselskii's fixed point theorem (KFPT). Furthermore, providing adequate assumptions, the T-controllability of the considered system is organised by using extended Gronwall's inequality. We demonstrate the theoretical insights and numerical simulations are included which is unique and makes this work more interesting. The obtained results generalise existing results from [Chalishajar, D. N., George, R. K., & Nandakumaran, A. K. (2010). Trajectory controllability of nonlinear integro-differential system. Journal of Franklin Institute, 347(7), 1065-1075.; Durga, N., Muthukumar, P., & Malik, M. (2022). Trajectory controllability of Hilfer fractional neutral stochastic differential equation with deviated argument and mixed fractional Brownian motion. Optimisation, 1-27.; Muslim, M., & George, R. K. (2019). Trajectory controllability of the nonlinear systems governed by fractional differential equations. Differential Equations and Dynamical Systems, 27, 529-537.; Dhayal, R., Malik, M., & Abbas, S. (2021). Approximate and trajectory controllability of fractional stochastic differential equation with non-instantaneous impulses and Poisson jumps. Asian Journal of Control, 23(6), 2669-2680.].
引用
收藏
页码:351 / 365
页数:15
相关论文
共 44 条
[1]   Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps [J].
Ahmed, Hamdy M. ;
El-Borai, Mahmoud M. ;
Ramadan, M. Elsaid .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[2]   Exact Null Controllability of Sobolev-Type Hilfer Fractional Stochastic Differential Equations with Fractional Brownian Motion and Poisson Jumps [J].
Ahmed, Hamdy M. ;
Wang, JinRong .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03) :673-690
[3]   Exponential stability of impulsive neutral stochastic functional differential equation driven by fractional Brownian motion and Poisson point processes [J].
Boufoussi B. ;
Hajji S. ;
Lakhel E.H. .
Afrika Matematika, 2018, 29 (1-2) :233-247
[4]   Transportation Inequalities for Neutral Stochastic Differential Equations Driven by Fractional Brownian Motion with Hurst Parameter Lesser Than 1/2 [J].
Boufoussi, Brahim ;
Hajji, Salah .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (05)
[5]   Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space [J].
Boufoussi, Brahim ;
Hajji, Salah .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (08) :1549-1558
[6]   Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion [J].
Caraballo, Tomas ;
Diop, Mamadou Abdoul .
FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) :745-760
[7]  
Chalishajar D., 2012, Applied Mathematics, V3, P1729, DOI [10.4236/am.2012.311239, DOI 10.4236/AM.2012.311239]
[8]  
Chalishajar D., 2021, NUMER ALGEBR CONTROL
[9]   Trajectory Controllability of Hilfer Fractional Neutral Stochastic Differential Equations with Deviated Argument Using Rosenblatt Process and Poisson Jumps [J].
Chalishajar, D. N. ;
Ramkumar, K. ;
Ravikumar, K. ;
Varshini, S. .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2025, 33 (02) :453-474
[10]   Trajectory controllability of nonlinear integro-differential system [J].
Chalishajar, D. N. ;
George, R. K. ;
Nandakumaran, A. K. ;
Acharya, F. S. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (07) :1065-1075