Multivariate Temporal Self-Attention Network for Subsurface Thermohaline Structure Reconstruction

被引:8
作者
Zhang, Shuyu [1 ,2 ]
Deng, Yuesen [1 ,2 ]
Niu, Qianru [3 ]
Zhang, Zhiyuan [4 ]
Che, Zhihui [3 ]
Jia, Sen [1 ,2 ]
Mu, Lin [3 ]
机构
[1] Shenzhen Univ, Guangdong Hong Kong Macau Joint Lab Smart Cities, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Geoenvironm Monitoring Coastal Zone, Minist Nat Resources, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Life Sci & Oceanog, Shenzhen 518060, Peoples R China
[4] PLA, Unit 91001, Beijing 100080, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Dilated causal convolution; remote sensing; self-attention network; subsurface thermohaline structure; zonal weighted loss; DATA ASSIMILATION; PACIFIC-OCEAN; TEMPERATURE; MESOSCALE; ALTIMETRY; PROFILES; DYNAMICS; CNN;
D O I
10.1109/TGRS.2023.3320350
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Argo observations are spatially sparse and temporally uneven, whereas satellites can provide high-resolution and continuous observations at the sea surface. The reconstruction of subsurface thermohaline structure using multisource remote sensing data is thus of great significance for investigating the ocean interior dynamics. Aiming at the existing problems of temporal feature extraction and nonlinear relationship fitting, this article proposes a multivariate temporal self-attention network (MTSAN) to effectively reconstruct the subsurface temperature anomaly (STA) and subsurface salinity anomaly (SSA) in the Pacific Ocean. The model integrates multisource remote sensing data, including sea surface temperature (SST) and sea surface salinity (SSS), wind speed, absolute dynamic topography (ADT), and significant wave height (SWH). In order to better extract the complex small- and medium-scale signals, a two-branch asymmetric residual module based on dilation causal convolution is designed to enhance the representation ability. Moreover, zonal weighted loss function with comprehensive indicators is proposed, in order to minimize the real error of grids and raise the accuracy of self-attention network. MTSAN reconstructs the STA and SSA during the El Nino event, and the results show that it has good performance for spatial distribution, vertical variation, and temporal extension. The overall R-2 and RMSE of STA are 0.536 and 0.241 degrees C, respectively, and the overall R-2 and RMSE of SSA are 0.645 and 0.037 psu, respectively. In addition, the results of comparison experiments illustrate the superiority of MTSAN over other machine learning and deep learning-based methods. Overall, we provide a new temporal self-attention approach to accurately reconstruct the 3-D thermohaline structure using high-resolution quasi-real-time satellite observations.
引用
收藏
页数:16
相关论文
共 67 条
  • [1] A REVIEW OF GLOBAL OCEAN TEMPERATURE OBSERVATIONS: IMPLICATIONS FOR OCEAN HEAT CONTENT ESTIMATES AND CLIMATE CHANGE
    Abraham, J. P.
    Baringer, M.
    Bindoff, N. L.
    Boyer, T.
    Cheng, L. J.
    Church, J. A.
    Conroy, J. L.
    Domingues, C. M.
    Fasullo, J. T.
    Gilson, J.
    Goni, G.
    Good, S. A.
    Gorman, J. M.
    Gouretski, V.
    Ishii, M.
    Johnson, G. C.
    Kizu, S.
    Lyman, J. M.
    Macdonald, A. M.
    Minkowycz, W. J.
    Moffitt, S. E.
    Palmer, M. D.
    Piola, A. R.
    Reseghetti, F.
    Schuckmann, K.
    Trenberth, K. E.
    Velicogna, I.
    Willis, J. K.
    [J]. REVIEWS OF GEOPHYSICS, 2013, 51 (03) : 450 - 483
  • [2] Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach
    Ali, MM
    Swain, D
    Weller, RA
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (20) : L203081 - 4
  • [3] Data assimilation in ocean models
    Anderson, DLT
    Sheinbaum, J
    Haines, K
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (10) : 1209 - 1266
  • [4] Salinity Profile Estimation in the Pacific Ocean from Satellite Surface Salinity Observations
    Bao, Senliang
    Zhang, Ren
    Wang, Huizan
    Yan, Hengqian
    Yu, Yang
    Chen, Jian
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2019, 36 (01) : 53 - 68
  • [5] Detection of ocean internal waves based on Faster R-CNN in SAR images
    Bao, Sude
    Meng, Junmin
    Sun, Lina
    Liu, Yongxin
    [J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY, 2020, 38 (01) : 55 - 63
  • [6] Generalization in fully-connected neural networks for time series forecasting
    Borovykh, Anastasia
    Oosterlee, Cornelis W.
    Bohte, Sander M.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 36
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Towards high resolution mapping of 3-D mesoscale dynamics from observations
    Buongiorno Nardelli, B.
    Guinehut, S.
    Pascual, A.
    Drillet, Y.
    Ruiz, S.
    Mulet, S.
    [J]. OCEAN SCIENCE, 2012, 8 (05) : 885 - 901
  • [9] Buongiorno Nardelli B, 2004, J ATMOS OCEAN TECH, V21, P693
  • [10] A Deep Learning Network to Retrieve Ocean Hydrographic Profiles from Combined Satellite and In Situ Measurements
    Buongiorno Nardelli, Bruno
    [J]. REMOTE SENSING, 2020, 12 (19)