Visible-light-driven photocatalytic degradation of Rose Bengal and Methylene Blue using low-cost sawdust derived SnO2 QDs@g-C3N4/biochar nanocomposite

被引:22
|
作者
Bhattacharjee, Baishali [1 ]
Hazarika, Berileena [1 ]
Ahmaruzzaman, Mohammed [1 ]
机构
[1] Natl Inst Technol, Dept Chem, Silchar 788010, Assam, India
关键词
Low-cost sawdust; SnO2 QDs@g-C3N4/biochar nanocomposite; AOP; Visible light; Degradation; CARBON NITRIDE NANOSHEETS; FACILE FABRICATION; DOPED SNO2; QUANTUM DOTS; DYE; NANOPARTICLES; PERFORMANCE; WATER; WASTE; COMPOSITES;
D O I
10.1007/s11356-023-30297-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Conversion of carbon-rich waste biomass into valuable products is an environmentally sustainable method. This study accentuates the synthesis of novel SnO2 QDs@g-C3N4/biochar using low-cost sawdust by applying the pyrolysis method. Morphology, structure, and composition of the synthesized SnO2 QDs@g-C3N4/biochar nanocomposite were characterized using SEM (scanning electron microscope), TEM (transmission electron microscope), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), FT-IR (infrared spectroscopy) and PL (photoluminescence) spectroscopy. The average diameter of the SnO2 QDs was measured from TEM and found to be 6.79 nm. Optical properties of the as-synthesized SnO2 QDs@g-C3N4/biochar were characterized using UV-visible spectroscopy. The direct band gap of synthesized SnO2 QDs@g-C3N4/biochar nanocomposite was calculated from Tauc's plot and found to be 2.0 eV. The fabricated SnO2 QDs@g-C3N4/biochar photocatalyst exhibited outstanding photocatalytic degradation efficiency for the removal of Rose Bengal (RB) and Methylene Blue (MB) dye through the Advanced Oxidation Process (AOP). The synthesized photocatalyst showed a degradation efficiency of 95.67% for the removal of RB under optimum conditions of 0.3 mL H2O2, photocatalyst dosage of only 0.06 gL(-1), and 15 ppm initial RB concentration within 80 min, and 94.5% for the removal of MB dye with 0.5 mL of H2O2, 0.08 gL(-1) of the fabricated photocatalyst and 6 ppm of initial MB concentration within 120 min. The photodegradation pathway followed the pseudo-first-order reaction kinetics with a rate constant of 0.00268 min(-1) and 0.00163 min(-1) for RB and MB respectively. The photocatalyst can be reused up to the 4(th) cycle with 80% efficiency.
引用
收藏
页码:112591 / 112610
页数:20
相关论文
共 50 条
  • [31] Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation
    Senthil, R. A.
    Theerthagiri, J.
    Selvi, A.
    Madhavan, J.
    OPTICAL MATERIALS, 2017, 64 : 533 - 539
  • [32] Exceptional Visible-Light-Driven Cocatalyst-Free Photocatalytic Activity of g-C3N4 by Well Designed Nanocomposites with Plasmonic Au and SnO2
    Zada, Amir
    Humayun, Muhammad
    Raziq, Fazal
    Zhang, Xuliang
    Qu, Yang
    Bai, Linlu
    Qin, Chuanli
    Jing, Liqiang
    Fu, Honggang
    ADVANCED ENERGY MATERIALS, 2016, 6 (21)
  • [33] In situ construction of an SnO2/g-C3N4 heterojunction for enhanced visible-light photocatalytic activity
    Chen, Xi
    Zhou, Banghong
    Yang, Shuanglei
    Wu, Hanshuo
    Wu, Yuxin
    Wu, Laidi
    Pan, Jun
    Xiong, Xiang
    RSC ADVANCES, 2015, 5 (84) : 68953 - 68963
  • [34] A facile pyrolysis method for g-C3N4 synthesizing: photocatalytic degradation of methylene blue under visible light
    Meng, Yali
    Xin, Gang
    Chen, Dan
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2011, 5 (5-6): : 648 - 650
  • [35] Direct Z-scheme Layered N-doped H+Ti2NbO7-/g-C3N4 Heterojunctions for Visible-light-driven Photocatalytic H2 Production and RhB Degradation
    Yu, Guiyun
    Zhao, Yefan
    Zhang, Yulong
    Wu, Jiaxin
    Liu, Chao
    CATALYSIS LETTERS, 2022, 152 (04) : 1145 - 1159
  • [36] Oxidative degradation of methylene blue by Ag2O@g-C3N4 photocatalysts under visible light
    Wang, Jianhua
    Zhang, Wanting
    TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 2023, 105 (1-7) : 60 - 74
  • [37] Preparation of an ultrathin 2D/2D rGO/g-C3N4 nanocomposite with enhanced visible-light-driven photocatalytic performance
    Yu, Kun
    Hu, Xiaofeng
    Yao, Kaiyuan
    Luo, Ping
    Wang, Xiuyuan
    Wang, Huihu
    RSC ADVANCES, 2017, 7 (58): : 36793 - 36799
  • [38] Study on CuO/g-C3N4 S-Scheme heterojunction for enhanced visible-light-driven photocatalytic degradation of xanthate
    Meng, Deqin
    Gao, Sihang
    Cheng, Ziqi
    Wang, Li
    Hu, Xiaolong
    Gao, Dengzheng
    Guo, Qingbin
    Wang, Xiaodan
    Wang, Minna
    OPTICAL MATERIALS, 2023, 143
  • [39] Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C3N4 Nanosheets
    Xu, Jing
    Wang, Zhouping
    Zhu, Yongfa
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) : 27727 - 27735
  • [40] Visible-light-driven photocatalytic performance of a Z-scheme based TiO2/WO3/g-C3N4 ternary heterojunctions
    Ibrahim, Yusuf. O.
    Gondal, M. A.
    MOLECULAR CATALYSIS, 2021, 505