Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester

被引:2
作者
Raghavan, Sreekumari [1 ]
Gupta, Rishi [1 ]
Sharma, Loveleen [1 ]
机构
[1] Univ Victoria, Dept Civil Engn Engn Comp Sci ECS 314, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
vibrations; energy harvesting; piezoelectric material; applications of piezoelectric vibration energy harvester (PVEH); ionic polymer-metal composite (IPMC); POLYMER-METAL COMPOSITES; IPMC ACTUATOR; SENSORS;
D O I
10.3390/mi14091782
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Conversion of ambient energy to usable electrical energy is attracting attention from researchers since providing a maintenance-free power source for the sensors is critical in any IoT (Internet of Things)-based system and in SHM (structural health monitoring). Continuous health monitoring of structures is advantageous since the damage can be identified at inception and the necessary action taken. Sensor technology has advanced significantly, and MEMS (microelectromechanical systems)-based low-power sensors are available for incorporating into large structures. Relevant signal conditioning and transmission modules have also evolved, making them power-efficient and miniaturized. Various micro wireless sensor nodes (WSN) have also been developed in recent years that require very little power. This paper describes the applications of a novel tunable piezoelectric vibration energy harvester (PVEH) for providing autonomous power to low-power MEMS sensors for use in IoT and remote SHM. The novel device uses piezoelectric material and an ionic polymer-metal composite (IPMC) and enables electrical tuning of the resonant frequency using a small portion of the power generated.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Piezoelectric energy harvesters for biomedical applications [J].
Ali, Faizan ;
Raza, Waseem ;
Li, Xilin ;
Gul, Hajera ;
Kim, Ki-Hyun .
NANO ENERGY, 2019, 57 :879-902
[2]  
Alla Rajae, 2022, E3S Web of Conferences, V336, DOI 10.1051/e3sconf/202233600022
[3]  
[Anonymous], 2020, U.S. Patent Application, Patent No. 20210159816
[4]   Vibration energy harvesting: fabrication, miniaturisation and applications [J].
Beeby, S. P. ;
Zhu, D. .
SMART SENSORS, ACTUATORS, AND MEMS VII; AND CYBER PHYSICAL SYSTEMS, 2015, 9517
[5]  
Chang XL, 2020, 2020 IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE 2020), P160, DOI [10.1109/icse49846.2020.9166899, 10.1109/ICSE49846.2020.9166899]
[6]   A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders [J].
Chung, C. K. ;
Fung, P. K. ;
Hong, Y. Z. ;
Ju, M. S. ;
Lin, C. C. K. ;
Wu, T. C. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) :367-375
[7]  
Environmental Robots Inc, PROD
[8]   A Rainbow Piezoelectric Energy Harvesting System for Intelligent Tire Monitoring Applications [J].
Esmaeeli, Roja ;
Aliniagerdroudbari, Haniph ;
Hashemi, Seyed Reza ;
Nazari, Ashkan ;
Alhadri, Muapper ;
Zakri, Waleed ;
Mohammed, Abdul Haq ;
Batur, Celal ;
Farhad, Siamak .
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (06)
[9]   Mechanisms and applications of vibration energy harvesting in solid rocket motors [J].
Goel, Chirag ;
Srinivas, G. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (10) :3927-3933
[10]   Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants [J].
Han, Mengdi ;
Wang, Heling ;
Yang, Yiyuan ;
Liang, Cunman ;
Bai, Wubin ;
Yan, Zheng ;
Li, Haibo ;
Xue, Yeguang ;
Wang, Xinlong ;
Akar, Banu ;
Zhao, Hangbo ;
Luan, Haiwen ;
Lim, Jaeman ;
Kandela, Irawati ;
Ameer, Guillermo A. ;
Zhang, Yihui ;
Huang, Yonggang ;
Rogers, John A. .
NATURE ELECTRONICS, 2019, 2 (01) :26-35