Numerical Investigation on the Effects of InSb Geometry on the InGaSb Crystal Growth Under Microgravity

被引:1
|
作者
Jin, Xin [1 ]
Xu, Sheng [1 ]
Wang, Bing [1 ]
Chen, Zhanjun [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
关键词
Crystal growth; Numerical simulation; Microgravity; InGaSb; Heat and Mass transfer; GASB; DISSOLUTION; SIMULATION; MODEL;
D O I
10.1007/s12217-023-10072-x
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
InxGa1-xSb single crystals have been grown by using a GaSb/InSb/GaSb-sandwich system onboard at the International Space Station (ISS) via vertical gradient freezing method (VGF). In order to investigate the effects of InSb geometry on the InGaSb crystal growth under microgravity and further optimize the future space experiment, two-dimensional axisymmetric numerical simulations were carried out with different thicknesses and diameters of the InSb crystals. Simulation results showed that enough solutes from feed through diffusion is necessary for the crystal growth process and the InSb thickness will affect the axial Ga concentration gradient and therefore affect the crystal growth rates under microgravity. In addition, results also showed that a larger diameter for the InSb crystal will increase the volume crystal growth rates with a flatter shape for the grown crystal interfaces. In summary, simulation suggests a 2 mm or 3 mm thickness and a 12 mm diameter as the geometry of InSb for future space experiments.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Numerical simulation of Bridgman crystal growth of PbSnTe in microgravity
    Yao, M., 1600, Carl Hanser Verlag, Munchen, Germany (08):
  • [22] Numerical Investigation on Turbulence and Bubbles Distribution in Bubbly Flow Under Normal Gravity and Microgravity Conditions
    Pang, Mingjun
    Wei, Jinjia
    Yu, Bo
    Kawaguchi, Yasuo
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2010, 22 (03) : 283 - 294
  • [23] The stability of the crystal growth face in a model for crystal growth from solution under microgravity
    Huo, CR
    Zhu, ZH
    Ge, PW
    Chen, D
    ACTA PHYSICA SINICA, 2001, 50 (03) : 377 - 382
  • [24] InSb CRYSTAL GROWTH UNDER MICRO-GRAVITY CONDITION
    张仿清
    张莉
    陈光华
    沈明智
    晏国洪
    达道安
    黄良甫
    谢燮
    谈晓臣
    Chinese Science Bulletin, 1989, (18) : 1529 - 1532
  • [25] Numerical analysis of crystal growth of an InAs-GaAs binary semiconductor by the Travelling Liquidus-Zone method under microgravity conditions
    Maekawa, T
    Sugiki, Y
    Matsumoto, S
    Adachi, S
    Yoda, S
    Kinoshita, K
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (21) : 4535 - 4546
  • [26] Vapour crystal growth of CdTe under terrestrial and microgravity conditions
    Benz, KW
    Laasch, M
    Kunz, T
    Fiederle, M
    Joerger, W
    MATERIALS RESEARCH IN LOW GRAVITY, 1997, 3123 : 2 - 6
  • [27] Numerical model of protein crystal growth in a diffusive field such as the microgravity environment
    Tanaka, Hiroaki
    Sasaki, Susumu
    Takahashi, Sachiko
    Inaka, Koji
    Wada, Yoshio
    Yamada, Mitsugu
    Ohta, Kazunori
    Miyoshi, Hiroshi
    Kobayashi, Tomoyuki
    Kamigaichi, Shigeki
    JOURNAL OF SYNCHROTRON RADIATION, 2013, 20 : 1003 - 1009
  • [28] Numerical Studies of Fluid Flow in Microgravity Conditions for Confined Crystal Growth
    Xavier Ruiz
    Laureano Ramírez-Piscina
    Jaume Casademunt
    Astrophysics and Space Science, 2001, 276 : 135 - 140
  • [29] Float-zone crystal growth of CdGeAs2 in microgravity:: numerical simulation and experiment
    Saghir, MZ
    Labrie, D
    Ginovker, A
    Paton, BE
    George, AE
    Olson, K
    Simpson, AM
    JOURNAL OF CRYSTAL GROWTH, 2000, 208 (1-4) : 370 - 378
  • [30] A Numerical Study of Controlling The G-Jitter Induced Convection in The Solution of A Crystal Growth Crucible under Microgravity
    Okano, Y.
    Ishii, A.
    Miyashita, H.
    Minakuchi, H.
    Dost, S.
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2006, 2 (04): : 261 - 269