Reinforcement learning framework for UAV-based target localization applications

被引:14
作者
Shurrab, Mohammed [1 ]
Mizouni, Rabeb [1 ]
Singh, Shakti [1 ]
Otrok, Hadi [1 ]
机构
[1] Khalifa Univ, Elect Engn & Comp Sci Dept, Abu Dhabi 127788, U Arab Emirates
关键词
Target localization; Unmanned aerial vehicle (UAV); Reinforcement learning (RL); Deep Q-network (DQN); Data-driven; Deep reinforcement learning (DRL); Smart environmental monitoring (SEM); INTERNET; SYSTEM; THINGS; IOT;
D O I
10.1016/j.iot.2023.100867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smart environmental monitoring has gained prominence, where target localization is of utmost importance. Employing UAVs for localization tasks is appealing owing to their low-cost, light-weight, and high maneuverability. However, UAVs lack the autonomy of decision-making if met with uncertain situations. Therefore, reinforcement learning (RL) can introduce intelligence to UAVs, where they learn to act based on the presented situation. Existing works focus on UAV trajectory optimization, navigation, and target tracking. These methods are application-specific and cannot be adapted to localization tasks since they require prior knowledge of the target. Moreover, the current RL-based autonomous target localization systems are lacking since-1) they must keep track of all visited locations and their corresponding readings, 2) they require retraining when encountering new environments, and 3) they are not scalable since the agent's movement is limited to slow speeds and for specific environments. Therefore, this work proposes a data-driven UAV target localization system based on Q-learning, which employs tabular methods to learn the optimal policy. Deep Q-network (DQN) is introduced to enhance the RL model and alleviate the curse of dimensionality. The proposed models enable smart decision-making, where the sensory information gathered by the UAV is exploited to produce the best action. Moreover, the UAV movement is modeled based on motion physics, where the actions correspond to linear velocities and heading angles. The proposed approach is compared with different benchmarks, where the results indicate that a more efficient, scalable, and adaptable localization is achieved, irrespective of the environment or source characteristics, without retraining.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Autonomous UAV-based surveillance system for multi-target detection using reinforcement learning
    Salameh, Haythem Bany
    Hussienat, Ayyoub
    Alhafnawi, Mohannad
    Al-Ajlouni, Ahmad
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (07): : 9381 - 9394
  • [2] IoT Sensor Selection for Target Localization: A Reinforcement Learning based Approach
    Shurrab, Mohammed
    Singh, Shakti
    Mizouni, Rabeb
    Otrok, Hadi
    AD HOC NETWORKS, 2022, 134
  • [3] Deep Reinforcement Learning for UAV-Based SDWSN Data Collection
    Karegar, Pejman A.
    Al-Hamid, Duaa Zuhair
    Chong, Peter Han Joo
    FUTURE INTERNET, 2024, 16 (11)
  • [4] Timely Data Collection for UAV-Based IoT Networks: A Deep Reinforcement Learning Approach
    Hu, Yingmeng
    Liu, Yan
    Kaushik, Aryan
    Masouros, Christos
    Thompson, John S.
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 12295 - 12308
  • [5] UAV-Based Data Collection and Wireless Power Transfer System with Deep Reinforcement Learning
    Lee, Jaewook
    Seo, Sangwon
    Ko, Haneul
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 400 - 403
  • [6] Deep Reinforcement Learning for Trustworthy and Time-Varying Connection Scheduling in a Coupled UAV-Based Femtocaching Architecture
    Hajiakhondi-Meybodi, Zohreh
    Mohammadi, Arash
    Abouei, Jamshid
    IEEE ACCESS, 2021, 9 : 32263 - 32281
  • [7] A Review on UAV-Based Applications for Precision Agriculture
    Tsouros, Dimosthenis C.
    Bibi, Stamatia
    Sarigiannidis, Panagiotis G.
    INFORMATION, 2019, 10 (11)
  • [8] Development of UAV-Based Target Tracking and Recognition Systems
    Wang, Shuaijun
    Jiang, Fan
    Zhang, Bin
    Ma, Rui
    Hao, Qi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (08) : 3409 - 3422
  • [9] Coarse-to-Fine UAV Target Tracking With Deep Reinforcement Learning
    Zhang, Wei
    Song, Ke
    Rong, Xuewen
    Li, Yibin
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (04) : 1522 - 1530
  • [10] Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Deep Reinforcement Learning
    Guoqiang Xu
    Weilai Jiang
    Zhaolei Wang
    Yaonan Wang
    Journal of Intelligent & Robotic Systems, 2022, 104