A Comprehensive Study of ChatGPT: Advancements, Limitations, and Ethical Considerations in Natural Language Processing and Cybersecurity

被引:54
|
作者
Alawida, Moatsum [1 ]
Mejri, Sami [2 ]
Mehmood, Abid [1 ]
Chikhaoui, Belkacem [3 ]
Abiodun, Oludare Isaac [4 ]
机构
[1] Abu Dhabi Univ, Dept Comp Sci, POB 59911, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Ctr Teaching & Learning, POB 127788, Abu Dhabi, U Arab Emirates
[3] TELUQ Univ, Appl Artificial Intelligence Inst, Montreal, PQ H2S 3L5, Canada
[4] Univ Abuja, Dept Comp Sci, Gwagwalada 900110, Nigeria
关键词
ChatGPT; language generation; natural language processing (NLP); cybersecurity; ChatGPT applications; ARTIFICIAL-INTELLIGENCE; MEDICAL DEVICES;
D O I
10.3390/info14080462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an in-depth study of ChatGPT, a state-of-the-art language model that is revolutionizing generative text. We provide a comprehensive analysis of its architecture, training data, and evaluation metrics and explore its advancements and enhancements over time. Additionally, we examine the capabilities and limitations of ChatGPT in natural language processing (NLP) tasks, including language translation, text summarization, and dialogue generation. Furthermore, we compare ChatGPT to other language generation models and discuss its applicability in various tasks. Our study also addresses the ethical and privacy considerations associated with ChatGPT and provides insights into mitigation strategies. Moreover, we investigate the role of ChatGPT in cyberattacks, highlighting potential security risks. Lastly, we showcase the diverse applications of ChatGPT in different industries and evaluate its performance across languages and domains. This paper offers a comprehensive exploration of ChatGPT's impact on the NLP field.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Natural Language Processing for Literature Search in Vascular Surgery: A Pilot Study Testing an Artificial Intelligence Based Application
    Roumengas, Robin
    Di Lorenzo, Gilles
    Salhi, Amel
    de Buyer, Paul
    Chaudhuri, Arindam
    Lareyre, Fabien
    Raffort, Juliette
    EJVES VASCULAR FORUM, 2023, 60 : 48 - 52
  • [42] Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs
    Garvin, Jennifer Hornung
    Kim, Youngjun
    Gobbel, Glenn Temple
    Matheny, Michael E.
    Redd, Andrew
    Bray, Bruce E.
    Heidenreich, Paul
    Bolton, Dan
    Heavirland, Julia
    Kelly, Natalie
    Reeves, Ruth
    Kalsy, Megha
    Goldstein, Mary Kane
    Meystre, Stephane M.
    JMIR MEDICAL INFORMATICS, 2018, 6 (01)
  • [43] Predicting Satisfaction With Chat-Counseling at a 24/7 Chat Hotline for the Youth: Natural Language Processing Study
    Hornstein, Silvan
    Lueken, Ulrike
    Wundrack, Richard
    Hilbert, Kevin
    JMIR AI, 2025, 4
  • [44] An Ontology Development Methodology Based on Ontology-Driven Conceptual Modeling and Natural Language Processing: Tourism Case Study
    Haridy, Shaimaa
    Ismail, Rasha M.
    Badr, Nagwa
    Hashem, Mohamed
    BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
  • [45] Development of a Natural Language Processing (NLP) model to automatically extract clinical data from electronic health records: results from an Italian comprehensive stroke center
    Badalotti, Davide
    Agrawal, Akanksha
    Pensato, Umberto
    Angelotti, Giovanni
    Marcheselli, Simona
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 192
  • [46] Linguistic Markers of Psychological Resilience in World Trade Center First Responders: A Computer-Based Natural Language Processing Study
    Braide, Biobele
    Cahn, Leah
    Monti, Elisa
    Garg, Sahil
    Norbury, Agnes
    Torres, Danielle
    Aaronson, Cindy
    Pietrzak, Robert H.
    Perez-Rodriguez, M. Mercedes
    Feder, Adriana
    BIOLOGICAL PSYCHIATRY, 2020, 87 (09) : S302 - S302
  • [47] Daily estimates of individual discharge likelihood with deep learning natural language processing in general medicine: a prospective and external validation study
    Stephen Bacchi
    Toby Gilbert
    Samuel Gluck
    Joy Cheng
    Yiran Tan
    Ivana Chim
    Jim Jannes
    Timothy Kleinig
    Simon Koblar
    Internal and Emergency Medicine, 2022, 17 : 411 - 415
  • [48] Oral anticoagulant treatment in atrial fibrillation: the AFIRMA real-world study using natural language processing and machine learning
    Cosin-Sales, J.
    Anguita, M.
    Suarez, C.
    Arias-Cabrales, C.
    Martinez-Sanchez, L.
    Group, S. R.
    Arumi, D.
    de Cabo, S. Fernandez
    REVISTA CLINICA ESPANOLA, 2024, 224 (07): : 428 - 436
  • [49] Natural Language Processing-Based Virtual Cofacilitator for Online Cancer Support Groups: Protocol for an Algorithm Development and Validation Study
    Leung, Yvonne W.
    Wouterloot, Elise
    Adikari, Achini
    Hirst, Graeme
    de Silva, Daswin
    Wong, Jiahui
    Bender, Jacqueline L.
    Gancarz, Mathew
    Gratzer, David
    Alahakoon, Damminda
    Esplen, Mary Jane
    JMIR RESEARCH PROTOCOLS, 2021, 10 (01):
  • [50] Clinical characteristics and prognostic factors for Crohn's disease relapses using natural language processing and machine learning: a pilot study
    Gomollon, Fernando
    Gisbert, Javier P.
    Guerra, Ivan
    Plaza, Rocio
    Pajares Villarroya, Ramon
    Moreno Almazan, Luis
    Carmen Lopez Martin, Ma
    Dominguez Antonaya, Mercedes
    Vera Mendoza, Maria Isabel
    Aparicio, Jesus
    Martinez, Vicente
    Tagarro, Ignacio
    Fernandez-Nistal, Alonso
    Lumbreras, Sara
    Mate, Claudia
    Montoto, Carmen
    EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2022, 34 (04) : 389 - 397