Risk Prediction of Cardioembolic Stroke using Clinical Data and Non-contrast CT

被引:0
|
作者
Jakkrawankul, Pasit [1 ]
Chunharas, Chaipat [2 ]
Akarathanawat, Wasan [3 ]
Vorasayan, Pongpat [3 ]
Chunamchai, Sedthapong [2 ]
Pratanwanich, Ploy N. [4 ]
Punyabukkana, Proadpran [1 ]
Chuangsuwanich, Ekapol [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok, Thailand
[2] Chulalongkorn Univ, Dept Internal Med, Bangkok, Thailand
[3] Chulalongkorn Univ, Dept Med, Bangkok, Thailand
[4] Chulalongkorn Univ, Dept Math & Comp Sci, Bangkok, Thailand
来源
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP | 2023年
关键词
Cardioembolic stroke; multimodal fusion; deep learning; non-contrast CT;
D O I
10.1109/SSP53291.2023.10207950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.
引用
收藏
页码:433 / 437
页数:5
相关论文
共 50 条
  • [31] Automated delineation of acute ischemic stroke lesions on non-contrast CT using 3D deep learning: A promising step towards efficient diagnosis and treatment
    Wang, Wei -Chun
    Chien, Shang -Yu
    Tsai, Sheng-Ta
    Yang, Yu -Wan
    Nguyen, Dang-Khoa
    Wu, Ya-Lun
    Lu, Ming-Kuei
    Sun, Ting-Hsuan
    Yu, Jiaxin
    Lin, Ching -Ting
    Chen, Chien -Wei
    Hsu, Kai-Cheng
    Tsai, Chon-Haw
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [32] Accuracy of radiomics for differentiating diffuse liver diseases on non-contrast CT
    Fatemeh Homayounieh
    Sanjay Saini
    Leila Mostafavi
    Ruhani Doda Khera
    Michael Sühling
    Bernhard Schmidt
    Ramandeep Singh
    Thomas Flohr
    Mannudeep K. Kalra
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 1727 - 1736
  • [33] Clues to vascular disorders at non-contrast CT of the chest, abdomen, and pelvis
    Esterson, Yonah B.
    Berkowitz, Jennifer L.
    Friedman, Barak
    Hines, John J.
    Shah, Priya K.
    Grimaldi, Gregory M.
    ABDOMINAL RADIOLOGY, 2017, 42 (08) : 2175 - 2187
  • [34] Esophageal cancer detection via non-contrast CT and deep learning
    Lin, Chong
    Guo, Yi
    Huang, Xu
    Rao, Shengxiang
    Zhou, Jianjun
    FRONTIERS IN MEDICINE, 2024, 11
  • [35] Clues to vascular disorders at non-contrast CT of the chest, abdomen, and pelvis
    Yonah B. Esterson
    Jennifer L. Berkowitz
    Barak Friedman
    John J. Hines
    Priya K. Shah
    Gregory M. Grimaldi
    Abdominal Radiology, 2017, 42 : 2175 - 2187
  • [36] Accuracy of radiomics for differentiating diffuse liver diseases on non-contrast CT
    Homayounieh, Fatemeh
    Saini, Sanjay
    Mostafavi, Leila
    Doda Khera, Ruhani
    Suehling, Michael
    Schmidt, Bernhard
    Singh, Ramandeep
    Flohr, Thomas
    Kalra, Mannudeep K.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (10) : 1727 - 1736
  • [37] Automated Prediction of Supratentorial Hematoma Expansion from Admission Non-Contrast Head Computed Tomography (CT) Scan
    Payabvash, Sam
    Tran, Anh T.
    Zeevi, Tal
    Haider, Stefan P.
    Abou Karam, Gaby
    Berson, Elisa R.
    Tharmaseelan, Hishan
    Qureshi, Adnan I.
    Sanelli, Pina C.
    Werring, David J.
    Malhotra, Ajay
    De Havenon, Adam
    Falcone, Guido J.
    Sheth, Kevin N.
    CEREBROVASCULAR DISEASES, 2023, 52 : 11 - 12
  • [38] Automated Epicardial Fat Volume Quantification from Non-contrast CT
    Ding, Xiaowei
    Terzopoulos, Demetri
    Diaz-Zamudio, Mariana
    Berman, Daniel S.
    Slomka, Piotr J.
    Dey, Damini
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [39] Segmenting Ischemic Penumbra and Infarct Core Simultaneously on Non-Contrast CT of Patients with Acute Ischemic Stroke Using Novel Convolutional Neural Network
    Kuang, Hulin
    Tan, Xianzhen
    Wang, Jie
    Qu, Zhe
    Cai, Yuxin
    Chen, Qiong
    Kim, Beom Joon
    Qiu, Wu
    BIOMEDICINES, 2024, 12 (03)
  • [40] Estimating degree of coronary artery stenosis severity from non-contrast CT images using CNN
    Asakawa, Tetsuya
    Shinoda, Hiroki
    Shimizu, Kazuki
    Nomura, Kei
    Aono, Masaki
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 9 - 14