Risk Prediction of Cardioembolic Stroke using Clinical Data and Non-contrast CT

被引:0
|
作者
Jakkrawankul, Pasit [1 ]
Chunharas, Chaipat [2 ]
Akarathanawat, Wasan [3 ]
Vorasayan, Pongpat [3 ]
Chunamchai, Sedthapong [2 ]
Pratanwanich, Ploy N. [4 ]
Punyabukkana, Proadpran [1 ]
Chuangsuwanich, Ekapol [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok, Thailand
[2] Chulalongkorn Univ, Dept Internal Med, Bangkok, Thailand
[3] Chulalongkorn Univ, Dept Med, Bangkok, Thailand
[4] Chulalongkorn Univ, Dept Math & Comp Sci, Bangkok, Thailand
来源
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP | 2023年
关键词
Cardioembolic stroke; multimodal fusion; deep learning; non-contrast CT;
D O I
10.1109/SSP53291.2023.10207950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.
引用
收藏
页码:433 / 437
页数:5
相关论文
共 50 条
  • [21] Pseudo-contrast cardiac CT angiography derived from non-contrast CT using conditional generative adversarial networks
    Killekar, Aditya
    Kwiecinski, Jacek
    Kruk, Mariusz
    Kepka, Cezary
    Shanbhag, Aakash
    Dey, Damini
    Slomka, Piotr
    MEDICAL IMAGING 2023, 2023, 12464
  • [22] Utility of CT head in the acute setting: value of contrast and non-contrast studies
    W. Shuaib
    M. H. Tiwana
    F. H. Chokshi
    J. O. Johnson
    H. Bedi
    F. Khosa
    Irish Journal of Medical Science (1971 -), 2015, 184 : 631 - 635
  • [23] Utility of CT head in the acute setting: value of contrast and non-contrast studies
    Shuaib, W.
    Tiwana, M. H.
    Chokshi, F. H.
    Johnson, J. O.
    Bedi, H.
    Khosa, F.
    IRISH JOURNAL OF MEDICAL SCIENCE, 2015, 184 (03) : 631 - 635
  • [24] Segmentation of Kidney Tumors on Non-Contrast CT Images Using Protuberance Detection Network
    Hatsutani, Taro
    Ichinose, Akimichi
    Nakamura, Keigo
    Kitamura, Yoshiro
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 : 13 - 22
  • [25] Clinical value of automated volumetric quantification of early ischemic tissue changes on non-contrast CT
    Brugnara, Gianluca
    Mihalicz, Peter
    Herweh, Christian
    Schonenberger, Silvia
    Purrucker, Jan
    Nagel, Simon
    Ringleb, Peter Arthur
    Bendszus, Martin
    Mohlenbruch, Markus A.
    Neuberger, Ulf
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2023, 15 (E2) : E178 - E183
  • [26] Seeing the Invisible: On Aortic Valve Reconstruction in Non-contrast CT
    Bujny, Mariusz
    Jesionek, Katarzyna
    Nalepa, Jakub
    Bartczak, Tomasz
    Miszalski-Jamka, Karol
    Kostur, Marcin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IX, 2024, 15009 : 572 - 581
  • [27] Segmenting Hemorrhagic and Ischemic Infarct Simultaneously From Follow-Up Non-Contrast CT Images in Patients With Acute Ischemic Stroke
    Kuang, Hulin
    Menon, Buoy K.
    Qiu, Wu
    IEEE ACCESS, 2019, 7 : 39842 - 39851
  • [28] Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network
    Kuang, Hulin
    Menon, Bijoy K.
    Qiu, Wu
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (21)
  • [29] Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT
    Commandeur, Frederic
    Goeller, Markus
    Betancur, Julian
    Cadet, Sebastien
    Doris, Mhairi
    Chen, Xi
    Berman, Daniel S.
    Slomka, Piotr J.
    Tamarappoo, Balaji K.
    Dey, Damini
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (08) : 1835 - 1846
  • [30] Automatic segmentation of hemorrhagic transformation on follow-up non-contrast CT after acute ischemic stroke
    Sun, Jiacheng
    Werdiger, Freda
    Blair, Christopher
    Chen, Chushuang
    Yang, Qing
    Bivard, Andrew
    Lin, Longting
    Parsons, Mark
    FRONTIERS IN NEUROINFORMATICS, 2024, 18