Risk Prediction of Cardioembolic Stroke using Clinical Data and Non-contrast CT

被引:0
|
作者
Jakkrawankul, Pasit [1 ]
Chunharas, Chaipat [2 ]
Akarathanawat, Wasan [3 ]
Vorasayan, Pongpat [3 ]
Chunamchai, Sedthapong [2 ]
Pratanwanich, Ploy N. [4 ]
Punyabukkana, Proadpran [1 ]
Chuangsuwanich, Ekapol [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok, Thailand
[2] Chulalongkorn Univ, Dept Internal Med, Bangkok, Thailand
[3] Chulalongkorn Univ, Dept Med, Bangkok, Thailand
[4] Chulalongkorn Univ, Dept Math & Comp Sci, Bangkok, Thailand
来源
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP | 2023年
关键词
Cardioembolic stroke; multimodal fusion; deep learning; non-contrast CT;
D O I
10.1109/SSP53291.2023.10207950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.
引用
收藏
页码:433 / 437
页数:5
相关论文
共 50 条
  • [1] Segmentation of infarct lesions and prognosis prediction for acute ischemic stroke using non-contrast CT scans
    Wang, Xuechun
    Meng, Yuting
    Dong, Zhijian
    Cao, Zehong
    He, Yichu
    Sun, Tianyang
    Zhou, Qing
    Niu, Guozhong
    Ding, Zhongxiang
    Shi, Feng
    Shen, Dinggang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 258
  • [2] Dual-Energy CT in Acute Stroke: Could Non-Contrast CT Be Replaced by Virtual Non-Contrast CT? A Feasibility Study
    Herpe, Guillaume
    Platon, Alexandra
    Poletti, Pierre-Alexandre
    Lovblad, Karl O.
    Machi, Paolo
    Becker, Minerva
    Muster, Michel
    Perneger, Thomas
    Guillevin, Remy
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (13)
  • [3] Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation from Contrast Enhanced CT
    Song, Chongchong
    He, Baochun
    Chen, Hongyu
    Jia, Shuangfu
    Chen, Xiaoxia
    Jia, Fucang
    INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING, IMIMIC 2020, MIL3ID 2020, LABELS 2020, 2020, 12446 : 122 - 129
  • [4] Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study
    Chen, Weidao
    Wu, Jiangfen
    Wei, Ren
    Wu, Shuang
    Xia, Chen
    Wang, Dawei
    Liu, Daliang
    Zheng, Longmei
    Zou, Tianyu
    Li, Ruijiang
    Qi, Xianrong
    Zhang, Xiaotong
    INSIGHTS INTO IMAGING, 2022, 13 (01)
  • [5] Identifying Thrombus on Non-Contrast CT in Patients with Acute Ischemic Stroke
    Qazi, Shakeel
    Qazi, Emmad
    Wilson, Alexis T.
    McDougall, Connor
    Al-Ajlan, Fahad
    Evans, James
    Gensicke, Henrik
    Hill, Michael D.
    Lee, Ting
    Goyal, Mayank
    Demchuk, Andrew M.
    Menon, Bijoy K.
    Forkert, Nils D.
    DIAGNOSTICS, 2021, 11 (10)
  • [6] Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study
    Weidao Chen
    Jiangfen Wu
    Ren Wei
    Shuang Wu
    Chen Xia
    Dawei Wang
    Daliang Liu
    Longmei Zheng
    Tianyu Zou
    Ruijiang Li
    Xianrong Qi
    Xiaotong Zhang
    Insights into Imaging, 13
  • [7] Clinical Features, Non-Contrast CT Radiomic and Radiological Signs in Models for the Prediction of Hematoma Expansion in Intracerebral Hemorrhage
    Auriat, Angela
    Chen, Zejia
    Zhang, Liying
    Carrington, Andre
    Thornhill, Rebecca
    Miguel, Olivier
    Fard, Nima Omid
    Hiremath, Shivaprakash
    Abitbul, Vered Tshemeister
    Dowlatshashi, Dar
    Demchuk, Andrew
    Gladstone, David
    Morotti, Andrea
    Casetta, Ilaria
    Fainardi, Enrico
    Huynh, Thien
    Elkabouli, Marah
    Talbot, Zoe
    Melkus, Gerd
    Aviv, Richard
    CEREBROVASCULAR DISEASES, 2023, 52 : 63 - 63
  • [8] Cardiac Detection in Non-Contrast CT and Application to Calcium Scoring
    Asakawa, Tetsuya
    Sugimoto, Yuki
    Shinoda, Hiroki
    Shimizu, Kazuki
    Togawa, Takuya
    Komoda, Takuyuki
    Aono, Masaki
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 446 - 449
  • [9] Clinical Features, Non-Contrast CT Radiomic and Radiological Signs in Models for the Prediction of Hematoma Expansion in Intracerebral Hemorrhage
    Chen, Zejia Frank
    Zhang, Liying
    Carrington, Andre M.
    Thornhill, Rebecca
    Miguel, Olivier
    Auriat, Angela M.
    Omid-Fard, Nima
    Hiremath, Shivaprakash
    Tshemeister Abitbul, Vered
    Dowlatshahi, Dar
    Demchuk, Andrew
    Gladstone, David
    Morotti, Andrea
    Casetta, Ilaria
    Fainardi, Enrico
    Huynh, Thien
    Elkabouli, Marah
    Talbot, Zoe
    Melkus, Gerd
    Aviv, Richard, I
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2023, 74 (04): : 713 - 722
  • [10] Reliability, Reproducibility and Prognostic Accuracy of the Alberta Stroke Program Early CT Score on CT Perfusion and Non-Contrast CT in Hyperacute Stroke
    Naylor, Jillian
    Churilov, Leonid
    Chen, Ziyuan
    Koome, Miriam
    Rane, Neil
    Campbell, Bruce C. V.
    CEREBROVASCULAR DISEASES, 2017, 44 (3-4) : 195 - 202