Cinacalcet use in secondary hyperparathyroidism: a machine learning-based systematic review

被引:4
|
作者
Li, Xiaosong [1 ]
Ding, Wei [1 ]
Zhang, Hong [1 ]
机构
[1] Jilin Univ, Hosp 2, Dept Thyroid Surg, Changchun, Jilin, Peoples R China
来源
FRONTIERS IN ENDOCRINOLOGY | 2023年 / 14卷
关键词
calcimimetics; FGF-23; bibliometrics; LDA analysis; machine learning; CARDIOVASCULAR-DISEASE; VASCULAR CALCIFICATION; HEMODIALYSIS-PATIENTS; HCL THERAPY; EVENTS; ETELCALCETIDE; MANAGEMENT; FGF-23;
D O I
10.3389/fendo.2023.1146955
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionThis study aimed to systematically review research on cinacalcet and secondary hyperparathyroidism (SHPT) using machine learning-based statistical analyses. MethodsPublications indexed in the Web of Science Core Collection database on Cinacalcet and SHPT published between 2000 and 2022 were retrieved. The R package "Bibliometrix," VOSviewer, CiteSpace, meta, and latent Dirichlet allocation (LDA) in Python were used to generate bibliometric and meta-analytical results. ResultsA total of 959 articles were included in our bibliometric analysis. In total, 3753 scholars from 54 countries contributed to this field of research. The United States, Japan, and China were found to be among the three most productive countries worldwide. Three Japanese institutions (Showa University, Tokai University, and Kobe University) published the most articles on Cinacalcet and SHPT. Fukagawa, M.; Chertow, G.M.; Goodman W.G. were the three authors who published the most articles in this field. Most articles were published in Nephrology Dialysis Transplantation, Kidney International, and Therapeutic Apheresis and Dialysis. Research on Cinacalcet and SHPT has mainly included three topics: 1) comparative effects of various treatments, 2) the safety and efficacy of cinacalcet, and 3) fibroblast growth factor-23 (FGF-23). Integrated treatments, cinacalcet use in pediatric chronic kidney disease, and new therapeutic targets are emerging research hotspots. Through a meta-analysis, we confirmed the effects of Cinacalcet on reducing serum PTH (SMD = -0.56, 95% CI = -0.76 to -0.37, p = 0.001) and calcium (SMD = -0.93, 95% CI = -1.21to -0.64, p = 0.001) and improving phosphate (SMD = 0.17, 95% CI = -0.33 to -0.01, p = 0.033) and calcium-phosphate product levels (SMD = -0.49, 95% CI = -0.71 to -0.28, p = 0.001); we found no difference in all-cause mortality (RR = 0.97, 95% CI = 0.90 to 1.05, p = 0.47), cardiovascular mortality (RR = 0.69, 95% CI = 0.36 to 1.31, p = 0.25), and parathyroidectomy (RR = 0.36, 95% CI = 0.09 to 1.35, p = 0.13) between the Cinacalcet and non-Cinacalcet users. Moreover, Cinacalcet was associated with an increased risk of nausea (RR = 2.29, 95% CI = 1.73 to 3.05, p = 0.001), hypocalcemia (RR = 4.05, 95% CI = 2.33 to 7.04, p = 0.001), and vomiting (RR = 1.90, 95% CI = 1.70 to 2.11, p = 0.001). DiscussionThe number of publications indexed to Cinacalcet and SHPT has increased rapidly over the past 22 years. Literature distribution, research topics, and emerging trends in publications on Cinacalcet and SHPT were analyzed using a machine learning-based bibliometric review. The findings of this meta-analysis provide valuable insights into the efficacy and safety of cinacalcet for the treatment of SHPT, which will be of interest to both clinical and researchers.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Meteorological factors cannot be ignored in machine learning-based methods for predicting dengue, a systematic review
    Lanlan Fang
    Wan Hu
    Guixia Pan
    International Journal of Biometeorology, 2024, 68 : 401 - 410
  • [32] Meteorological factors cannot be ignored in machine learning-based methods for predicting dengue, a systematic review
    Fang, Lanlan
    Hu, Wan
    Pan, Guixia
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2024, 68 (03) : 401 - 410
  • [33] A systematic review of state-of-the-art strategies for machine learning-based protein function prediction
    Yan, Tian-Ci
    Yue, Zi-Xuan
    Xu, Hong-Quan
    Liu, Yu-Hong
    Hong, Yan-Feng
    Chen, Gong-Xing
    Tao, Lin
    Xie, Tian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 154
  • [34] Machine Learning-based Prediction Models for Diagnosis and Prognosis in Inflammatory Bowel Diseases: A Systematic Review
    Nguyen, Nghia H.
    Picetti, Dominic
    Dulai, Parambir S.
    Jairath, Vipul
    Sandborn, William J.
    Ohno-Machado, Lucila
    Chen, Peter L.
    Singh, Siddharth
    JOURNAL OF CROHNS & COLITIS, 2022, 16 (03) : 398 - 413
  • [35] Machine learning-based models for prediction of survival in medulloblastoma: a systematic review and meta-analysis
    Hajikarimloo, Bardia
    Habibi, Mohammad Amin
    Alvani, Mohammadamin Sabbagh
    Meinagh, Sima Osouli
    Kooshki, Alireza
    Afkhami-Ardakani, Omid
    Rasouli, Fatemeh
    Tos, Salem M.
    Tavanaei, Roozbeh
    Akhlaghpasand, Mohammadhosein
    Hashemi, Rana
    Hasanzade, Arman
    NEUROLOGICAL SCIENCES, 2025, 46 (02) : 689 - 696
  • [36] Review of machine learning-based Mineral Resource estimation
    Mahoob, M. A.
    Celik, T.
    Genc, B.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2022, 122 (11) : 655 - 664
  • [37] Dimension Reduction Techniques for Machine Learning-Based AC Microgrid Fault Diagnosis: A Systematic Review
    Zaben, Muiz M.
    Abido, Mohammad A.
    Worku, Muhammed Y.
    Hassan, Mohamed A.
    IEEE ACCESS, 2024, 12 : 160586 - 160612
  • [38] Machine learning-based prediction models for pressure injury: A systematic review and meta-analysis
    Pei, Juhong
    Guo, Xiaojing
    Tao, Hongxia
    Wei, Yuting
    Zhang, Hongyan
    Ma, Yuxia
    Han, Lin
    INTERNATIONAL WOUND JOURNAL, 2023, 20 (10) : 4328 - 4339
  • [39] Cinacalcet for the Treatment of Hyperparathyroidism in Kidney Transplant Recipients: A Systematic Review and Meta-analysis
    Cohen, Jordana B.
    Gordon, Craig E.
    Balk, Ethan M.
    Francis, Jean M.
    TRANSPLANTATION, 2012, 94 (10) : 1041 - 1048
  • [40] Federated learning-based IoT: A systematic literature review
    Hosseinzadeh, Mehdi
    Hemmati, Atefeh
    Rahmani, Amir Masoud
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2022, 35 (11)