AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials

被引:28
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
Integrable hierarchy; Lax pair; Zero curvature equation; NLS equations; mKdV equations; SOLITON HIERARCHY; EQUATIONS;
D O I
10.1016/j.aml.2023.108775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to derive a kind of integrable hierarchies with four potentials, which possess bi-Hamiltonian structures, from reduced AKNS matrix spectral problems. The associated recursion operators are worked out explicitly. The Lax pair formulation and the trace identity are basic tools in the analysis. Two nonlinear examples in the resulting integrable hierarchies are integrable nonlinear Schrodinger type equations and integrable modified Korteweg-de Vries type equations. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 21 条
  • [1] ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
  • [2] Ablowitz MJ., 1981, Solitons and the inverse scattering transform
  • [3] COUPLED KDV EQUATIONS WITH MULTI-HAMILTONIAN STRUCTURES
    ANTONOWICZ, M
    FORDY, AP
    [J]. PHYSICA D, 1987, 28 (03): : 345 - 357
  • [4] NON-LINEAR SCHRODINGER-EQUATIONS AND SIMPLE LIE-ALGEBRAS
    FORDY, AP
    KULISH, PP
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) : 427 - 443
  • [5] SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES
    FUCHSSTEINER, B
    FOKAS, AS
    [J]. PHYSICA D, 1981, 4 (01): : 47 - 66
  • [6] Integrable equations and recursion operators related to the affine Lie algebras Ar(1)
    Gerdjikov, V. S.
    Mladenov, D. M.
    Stefanov, A. A.
    Varbev, S. K.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
  • [7] Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem
    Liu, Tongshuai
    Xia, Tiecheng
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 68
  • [8] Ma W. X., 2023, Rep. Math. Phys, V92, P0
  • [9] Ma W.X., 2022, INT J APPL COMPUT MA, V8, P17
  • [10] Ma W.X., 2023, THEORET MATH PHYS, V215