Comprehensive insights into the regulatory mechanisms of lncrna in alkaline-salt stress tolerance in rice

被引:6
作者
Rehman, Obaid Ur [1 ,2 ]
Uzair, Muhammad [2 ]
Farooq, Muhammad Shahbaz [1 ,2 ]
Saleem, Bilal [2 ]
Attacha, Safira [3 ]
Attia, Kotb A. [4 ]
Farooq, Umer [2 ]
Fiaz, Sajid [5 ]
El-Kallawy, Wael. H. [6 ]
Kimiko, Itoh [7 ]
Khan, Muhammad Ramzan [2 ]
机构
[1] Jiangsu Univ, Food Sci & Biol Engn, Zhenjiang, Jiangsu, Peoples R China
[2] Natl Inst Genom & Adv Biotechnol, Pk Rd, Islamabad 45500, Pakistan
[3] Univ Agr, Inst Biotechnol & Genet Engn, Peshawar, Pakistan
[4] King Saud Univ, Sci Coll, Dept Biochem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Univ Haripur, Dept Plant Breeding & Genet, Haripur 22620, Pakistan
[6] Field Crop Res Inst, Agr Rese Ctr, Sakha, Egypt
[7] Niigata Univ, Inst Sci & Technol, Ikarashi-2, Nishi-ku, Niigata 9502181, Japan
关键词
ceRNA; Abiotic stress; Oryza sativa L; miRNA; Transcriptome; lncRNA; LONG NONCODING RNAS; ROLES;
D O I
10.1007/s11033-023-08648-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundAlkaline-salt is one of the abiotic stresses that slows plant growth and developmental processes and threatens crop yield. Long non-coding RNAs (lncRNAs) are endogenous RNA found in plants that engage in a variety of cellular functions and stress responses.MethodlncRNAs act as competing endogenous RNAs (ceRNA) and constitute a new set of gene control. The precise regulatory mechanism by which lncRNAs function as ceRNAs in response to alkaline-salt stress remains unclear. We identified alkaline-salt responsive lncRNAs using transcriptome-wide analysis of two varieties including alkaline-salt tolerant [WD20342 (WD)] and alkaline-salt sensitive [Caidao (CD)] rice cultivar under control and alkaline-salt stress treated [WD20342 (WDT, and Caidao (CDT)] conditions.ResultsInvestigating the competitive relationships between mRNAs and lncRNAs, we next built a ceRNA network involving lncRNAs based on the ceRNA hypothesis. Expression profiles revealed that a total of 65, 34, and 1549 differentially expressed (DE) lncRNAs, miRNAs, and mRNAs were identified in alkaline-salt tolerant WD (Control) vs. WDT (Treated). Similarly, 75 DE-lncRNAs, 34 DE-miRNAs, and 1725 DE-mRNAs (including up-regulated and down-regulated) were identified in alkaline-salt sensitive CD (Control) vs. CDT (Treated), respectively. An alkaline-salt stress ceRNA network discovered 321 lncRNA-miRNA-mRNA triplets in CD and CDT, with 32 lncRNAs, 121 miRNAs, and 111 mRNAs. Likewise, 217 lncRNA-miRNA-mRNA triplets in WD and WDT revealed the NONOSAT000455-osa_miR5809b-LOC_Os11g01210 triplet with the highest degree as a hub node with the most significant positive correlation in alkaline-salt stress response.ConclusionThe results of our investigation indicate that osa-miR5809b is dysregulated and plays a part in regulating the defense response of rice against alkaline-salt stress. Our study highlights the regulatory functions of lncRNAs acting as ceRNAs in the mechanisms underlying alkaline-salt resistance in rice.
引用
收藏
页码:7381 / 7392
页数:12
相关论文
共 42 条
  • [1] In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus
    Ashraf, Muhammad Aleem
    Feng, Xiaoyan
    Hu, Xiaowen
    Ashraf, Fakiha
    Shen, Linbo
    Iqbal, Muhammad Shahzad
    Zhang, Shuzhen
    [J]. PLOS ONE, 2022, 17 (01):
  • [2] Chromosome evolution and the genetic basis of agronomically important traits in greater yam
    Bredeson, Jessen, V
    Lyons, Jessica B.
    Oniyinde, Ibukun O.
    Okereke, Nneka R.
    Kolade, Olufisayo
    Nnabue, Ikenna
    Nwadili, Christian O.
    Hribova, Eva
    Parker, Matthew
    Nwogha, Jeremiah
    Shu, Shengqiang
    Carlson, Joseph
    Kariba, Robert
    Muthemba, Samuel
    Knop, Katarzyna
    Barton, Geoffrey J.
    Sherwood, Anna, V
    Lopez-Montes, Antonio
    Asiedu, Robert
    Jamnadass, Ramni
    Muchugi, Alice
    Goodstein, David
    Egesi, Chiedozie N.
    Featherston, Jonathan
    Asfaw, Asrat
    Simpson, Gordon G.
    Dolezel, Jaroslav
    Hendre, Prasad S.
    Van Deynze, Allen
    Kumar, Pullikanti Lava
    Obidiegwu, Jude E.
    Bhattacharjee, Ranjana
    Rokhsar, Daniel S.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] LncRNA TCONS_00021861 is functionally associated with drought tolerance in rice (Oryza sativa L.) via competing endogenous RNA regulation
    Chen, Jiajia
    Zhong, Yuqing
    Qi, Xin
    [J]. BMC PLANT BIOLOGY, 2021, 21 (01)
  • [4] Genome-Wide Identification of lncRNAs and Analysis of ceRNA Networks During Tomato Resistance to Phytophthora infestans
    Cui, Jun
    Jiang, Ning
    Hou, Xinxin
    Wu, Sihan
    Zhang, Qiang
    Meng, Jun
    Luan, Yushi
    [J]. PHYTOPATHOLOGY, 2020, 110 (02) : 456 - 464
  • [5] Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress
    Deng, Fenni
    Zhang, Xiaopei
    Wang, Wei
    Yuan, Rui
    Shen, Fafu
    [J]. BMC PLANT BIOLOGY, 2018, 18
  • [6] Characterization of long non-coding RNAs involved in cadmium toxic response in Brassica napus
    Feng, Sheng Jun
    Zhang, Xian Duo
    Liu, Xue Song
    Tan, Shang Kun
    Chu, Shan Shan
    Meng, Jin Guo
    Zhao, Kai Xuan
    Zheng, Jian Feng
    Yang, Zhi Min
    [J]. RSC ADVANCES, 2016, 6 (85) : 82157 - 82173
  • [7] microRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.)
    Ferreira, Thais Helena
    Gentile, Agustina
    Vilela, Romel Duarte
    Lacerda Costa, Gustavo Gilson
    Dias, Lara Isys
    Endres, Lauricio
    Menossi, Marcelo
    [J]. PLOS ONE, 2012, 7 (10):
  • [8] Target mimicry provides a new mechanism for regulation of microRNA activity
    Franco-Zorrilla, Jose Manuel
    Valli, Adrian
    Todesco, Marco
    Mateos, Isabel
    Puga, Maria Isabel
    Rubio-Somoza, Ignacio
    Leyva, Antonio
    Weigel, Detlef
    Garcia, Juan Antonio
    Paz-Ares, Javier
    [J]. NATURE GENETICS, 2007, 39 (08) : 1033 - 1037
  • [9] Integrated analysis of lncRNA-miRNA-mRNA ceRNA network and the potential prognosis indicators in sarcomas
    Gao, Lu
    Zhao, Yu
    Ma, Xuelei
    Zhang, Ling
    [J]. BMC MEDICAL GENOMICS, 2021, 14 (01)
  • [10] Genome-wide identification and characterization of long non-coding RNAs involved in flag leaf senescence of rice
    Huang, Xiaoping
    Zhang, Hongyu
    Wang, Qiang
    Guo, Rong
    Wei, Lingxia
    Song, Haiyan
    Kuang, Weigang
    Liao, Jianglin
    Huang, Yingjin
    Wang, Zhaohai
    [J]. PLANT MOLECULAR BIOLOGY, 2021, 105 (06) : 655 - 684