Quantum simulation of fundamental particles and forces

被引:54
作者
Bauer, Christian W. [1 ]
Davoudi, Zohreh [2 ,3 ,4 ]
Klco, Natalie [5 ,6 ]
Savage, Martin J. [7 ]
机构
[1] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[2] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Maryland, NSF Inst Robust Quantum Simulat, College Pk, MD 20742 USA
[5] Duke Univ, Duke Quantum Ctr, Durham, NC 27708 USA
[6] Duke Univ, Dept Phys, Durham, NC 27708 USA
[7] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
LATTICE GAUGE-THEORIES; CHIRAL FERMIONS; BELL INEQUALITIES; FIELD THEORY; ENTANGLEMENT; FORMULATION; SYMMETRIES; INVARIANCE; SCATTERING; ENTROPY;
D O I
10.1038/s42254-023-00599-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum simulations of the fundamental particles and forces of nature have a central role in understanding key static and dynamic quantum properties of matter. Motivations, techniques and future challenges for simulations of quantum fields are discussed, highlighting examples of early progress towards the dynamics of high-density, non-equilibrium systems of quarks, gluons and neutrinos. Key static and dynamic properties of matter - from creation in the Big Bang to evolution into subatomic and astrophysical environments - arise from the underlying fundamental quantum fields of the standard model and their effective descriptions. However, the simulation of these properties lies beyond the capabilities of classical computation alone. Advances in quantum technologies have improved control over quantum entanglement and coherence to the point at which robust simulations of quantum fields are anticipated in the foreseeable future. In this Perspective article, we discuss the emerging area of quantum simulations of standard-model physics, outlining the challenges and opportunities for progress in the context of nuclear and high-energy physics.
引用
收藏
页码:420 / 432
页数:13
相关论文
共 295 条
  • [71] Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis
    Ciavarella, Anthony
    Klco, Natalie
    Savage, Martin J.
    [J]. PHYSICAL REVIEW D, 2021, 103 (09)
  • [72] Preparation of the SU(3) lattice Yang-Mills vacuum with variational quantum methods
    Ciavarella, Anthony N.
    Chernyshev, Ivan A.
    [J]. PHYSICAL REVIEW D, 2022, 105 (07)
  • [73] Strategies for the determination of the running coupling of (2+1)-dimensional QED with quantum computing
    Clemente, Giuseppe
    Crippa, Arianna
    Jansen, Karl
    [J]. PHYSICAL REVIEW D, 2022, 106 (11)
  • [74] Quantum simulation of chiral phase transitions
    Czajka, Alexander M.
    Kang, Zhong-Bo
    Ma, Henry
    Zhao, Fanyi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (08)
  • [75] Practical quantum advantage in quantum simulation
    Daley, Andrew J.
    Bloch, Immanuel
    Kokail, Christian
    Flannigan, Stuart
    Pearson, Natalie
    Troyer, Matthias
    Zoller, Peter
    [J]. NATURE, 2022, 607 (7920) : 667 - 676
  • [76] Quantum simulation and spectroscopy of entanglement Hamiltonians
    Dalmonte, M.
    Vermersch, B.
    Zoller, P.
    [J]. NATURE PHYSICS, 2018, 14 (08) : 827 - +
  • [77] Entanglement Hamiltonians: From Field Theory to Lattice Models and Experiments
    Dalmonte, Marcello
    Eisler, Viktor
    Falconi, Marco
    Vermersch, Benoit
    [J]. ANNALEN DER PHYSIK, 2022, 534 (11)
  • [78] Exact and approximate unitary 2-designs and their application to fidelity estimation
    Dankert, Christoph
    Cleve, Richard
    Emerson, Joseph
    Livine, Etera
    [J]. PHYSICAL REVIEW A, 2009, 80 (01):
  • [79] Cold-atom quantum simulator for string and hadron dynamics in non-Abelian lattice gauge theory
    Dasgupta, Raka
    Raychowdhury, Indrakshi
    [J]. PHYSICAL REVIEW A, 2022, 105 (02)
  • [80] Approaching the Heisenberg Limit without Single-Particle Detection
    Davis, Emily
    Bentsen, Gregory
    Schleier-Smith, Monika
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (05)