Quantum simulation of fundamental particles and forces

被引:54
作者
Bauer, Christian W. [1 ]
Davoudi, Zohreh [2 ,3 ,4 ]
Klco, Natalie [5 ,6 ]
Savage, Martin J. [7 ]
机构
[1] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[2] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Maryland, NSF Inst Robust Quantum Simulat, College Pk, MD 20742 USA
[5] Duke Univ, Duke Quantum Ctr, Durham, NC 27708 USA
[6] Duke Univ, Dept Phys, Durham, NC 27708 USA
[7] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
LATTICE GAUGE-THEORIES; CHIRAL FERMIONS; BELL INEQUALITIES; FIELD THEORY; ENTANGLEMENT; FORMULATION; SYMMETRIES; INVARIANCE; SCATTERING; ENTROPY;
D O I
10.1038/s42254-023-00599-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum simulations of the fundamental particles and forces of nature have a central role in understanding key static and dynamic quantum properties of matter. Motivations, techniques and future challenges for simulations of quantum fields are discussed, highlighting examples of early progress towards the dynamics of high-density, non-equilibrium systems of quarks, gluons and neutrinos. Key static and dynamic properties of matter - from creation in the Big Bang to evolution into subatomic and astrophysical environments - arise from the underlying fundamental quantum fields of the standard model and their effective descriptions. However, the simulation of these properties lies beyond the capabilities of classical computation alone. Advances in quantum technologies have improved control over quantum entanglement and coherence to the point at which robust simulations of quantum fields are anticipated in the foreseeable future. In this Perspective article, we discuss the emerging area of quantum simulations of standard-model physics, outlining the challenges and opportunities for progress in the context of nuclear and high-energy physics.
引用
收藏
页码:420 / 432
页数:13
相关论文
共 295 条
  • [131] Dynamical quantum phase transitions in a noisy lattice gauge theory
    Jensen, Rasmus Berg
    Pedersen, Simon Panyella
    Zinner, Nikolaj Thomas
    [J]. PHYSICAL REVIEW B, 2022, 105 (22)
  • [132] Gluon field digitization via group space decimation for quantum computers
    Ji, Yao
    Lamm, Henry
    Zhu, Shuchen
    [J]. PHYSICAL REVIEW D, 2020, 102 (11)
  • [133] Johnson C, 2022, PREPRINT
  • [134] Jordan SP, 2014, QUANTUM INF COMPUT, V14, P1014
  • [135] Kan A., 2021, PREPRINT
  • [136] Error mitigation extends the computational reach of a noisy quantum processor
    Kandala, Abhinav
    Temme, Kristan
    Corcoles, Antonio D.
    Mezzacapo, Antonio
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. NATURE, 2019, 567 (7749) : 491 - +
  • [137] Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
    Kandala, Abhinav
    Mezzacapo, Antonio
    Temme, Kristan
    Takita, Maika
    Brink, Markus
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. NATURE, 2017, 549 (7671) : 242 - 246
  • [138] Kane C., 2022, PREPRINT
  • [139] Gauss's law, duality, and the Hamiltonian formulation of U(1) lattice gauge theory
    Kaplan, David B.
    Stryker, Jesse R.
    [J]. PHYSICAL REVIEW D, 2020, 102 (09)
  • [140] A METHOD FOR SIMULATING CHIRAL FERMIONS ON THE LATTICE
    KAPLAN, DB
    [J]. PHYSICS LETTERS B, 1992, 288 (3-4) : 342 - 347