Quantum simulation of fundamental particles and forces

被引:54
作者
Bauer, Christian W. [1 ]
Davoudi, Zohreh [2 ,3 ,4 ]
Klco, Natalie [5 ,6 ]
Savage, Martin J. [7 ]
机构
[1] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[2] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Maryland, NSF Inst Robust Quantum Simulat, College Pk, MD 20742 USA
[5] Duke Univ, Duke Quantum Ctr, Durham, NC 27708 USA
[6] Duke Univ, Dept Phys, Durham, NC 27708 USA
[7] Univ Washington, Dept Phys, InQubator Quantum Simulat IQuS, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
LATTICE GAUGE-THEORIES; CHIRAL FERMIONS; BELL INEQUALITIES; FIELD THEORY; ENTANGLEMENT; FORMULATION; SYMMETRIES; INVARIANCE; SCATTERING; ENTROPY;
D O I
10.1038/s42254-023-00599-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantum simulations of the fundamental particles and forces of nature have a central role in understanding key static and dynamic quantum properties of matter. Motivations, techniques and future challenges for simulations of quantum fields are discussed, highlighting examples of early progress towards the dynamics of high-density, non-equilibrium systems of quarks, gluons and neutrinos. Key static and dynamic properties of matter - from creation in the Big Bang to evolution into subatomic and astrophysical environments - arise from the underlying fundamental quantum fields of the standard model and their effective descriptions. However, the simulation of these properties lies beyond the capabilities of classical computation alone. Advances in quantum technologies have improved control over quantum entanglement and coherence to the point at which robust simulations of quantum fields are anticipated in the foreseeable future. In this Perspective article, we discuss the emerging area of quantum simulations of standard-model physics, outlining the challenges and opportunities for progress in the context of nuclear and high-energy physics.
引用
收藏
页码:420 / 432
页数:13
相关论文
共 295 条
  • [101] Many-body localization and thermalization: Insights from the entanglement spectrum
    Geraedts, Scott D.
    Nandkishore, Rahul
    Regnault, Nicolas
    [J]. PHYSICAL REVIEW B, 2016, 93 (17)
  • [102] On the entanglement entropy for gauge theories
    Ghosh, Sudip
    Soni, Ronak M.
    Trivedi, Sandip P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [103] PARTIAL-SYMMETRIES OF WEAK INTERACTIONS
    GLASHOW, SL
    [J]. NUCLEAR PHYSICS, 1961, 22 (04): : 579 - &
  • [104] Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter
    Goerg, Frederik
    Sandholzer, Kilian
    Minguzzi, Joaquin
    Desbuquois, Remi
    Messer, Michael
    Esslinger, Tilman
    [J]. NATURE PHYSICS, 2019, 15 (11) : 1161 - +
  • [105] Measurement of Bell-type inequalities and quantum entanglement from Λ-hyperon spin correlations at high energy colliders
    Gong, Wenjie
    Parida, Ganesh
    Tu, Zhoudunming
    Venugopalan, Raju
    [J]. PHYSICAL REVIEW D, 2022, 106 (03)
  • [106] Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms
    Gonzalez-Cuadra, Daniel
    Zache, Torsten, V
    Carrasco, Jose
    Kraus, Barbara
    Zoller, Peter
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (16)
  • [107] Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms
    Gonzalez-Cuadra, Daniel
    Zohar, Erez
    Cirac, J. Ignacio
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [108] An adaptive variational algorithm for exact molecular simulations on a quantum computer
    Grimsley, Harper R.
    Economou, Sophia E.
    Barnes, Edwin
    Mayhall, Nicholas J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [109] ULTRAVIOLET BEHAVIOR OF NON-ABELIAN GAUGE THEORIES
    GROSS, DJ
    WILCZEK, F
    [J]. PHYSICAL REVIEW LETTERS, 1973, 30 (26) : 1343 - 1346
  • [110] Observation of a Dynamical Quantum Phase Transition by a Superconducting Qubit Simulation
    Guo, Xue-Yi
    Yang, Chao
    Zeng, Yu
    Peng, Yi
    Li, He-Kang
    Deng, Hui
    Jin, Yi-Rong
    Chen, Shu
    Zheng, Dongning
    Fan, Heng
    [J]. PHYSICAL REVIEW APPLIED, 2019, 11 (04):