An Efficient Adaptive Differential Grouping Algorithm for Large-Scale Black-Box Optimization

被引:12
|
作者
Chen, An [1 ]
Ren, Zhigang [1 ]
Guo, Wenhua [2 ]
Liang, Yongsheng [1 ]
Feng, Zuren [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Automat Sci & Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron; Optimization; Sociology; Binary trees; Sun; Search problems; Roundoff errors; Adaptability; cooperative coevolution (CC); interdependency indicator; large-scale black-box optimization (LSBO); solution reutilization; EVOLUTIONARY OPTIMIZATION; COOPERATIVE COEVOLUTION; DECOMPOSITION METHOD;
D O I
10.1109/TEVC.2022.3170793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decomposition plays a significant role in cooperative coevolution (CC), which shows great potential in large-scale black-box optimization (LSBO). However, current learning-based decomposition algorithms require many fitness evaluations (FEs) to detect variable interdependencies and encounter the difficulty of threshold setting. To address these issues, this study proposes an efficient adaptive differential grouping (EADG) algorithm. Instead of homogeneously tackling different types of LSBO instances, EADG first identifies the instance type by detecting the interdependencies of a few pairs of variable subsets. Only if the instance is partially separable dose EADG further engages with it by converting its decomposition process into a search process in a binary tree. This facilitates the systematic reutilization of evaluated solutions so that half the interdependencies can be directly deduced without extra FEs. To promote the decomposition accuracy, EADG specially designs a normalized interdependency indicator that can adaptively generate a decomposition threshold according to its ordinal distribution. Theoretical analysis and experimental results show that EADG outperforms current popular decomposition algorithms. Further tests indicate that it can help CC achieve highly competitive optimization performance.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 50 条
  • [21] Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization
    Wang, Zi-Jia
    Zhan, Zhi-Hui
    Kwong, Sam
    Jin, Hu
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1175 - 1188
  • [22] Cooperative coevolution for non-separable large-scale black-box optimization: Convergence analyses and distributed accelerations
    Duan, Qiqi
    Shao, Chang
    Zhou, Guochen
    Yang, Haobin
    Zhao, Qi
    Shi, Yuhui
    APPLIED SOFT COMPUTING, 2024, 166
  • [23] Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping
    Bai, Hui
    Cheng, Ran
    Yazdani, Danial
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (11) : 6937 - 6950
  • [24] Applying graph-based differential grouping for multiobjective large-scale optimization
    Cao, Bin
    Zhao, Jianwei
    Gu, Yu
    Ling, Yingbiao
    Ma, Xiaoliang
    SWARM AND EVOLUTIONARY COMPUTATION, 2020, 53 (53)
  • [25] A surrogate-assisted variable grouping algorithm for general large-scale global optimization problems
    Chen, An
    Ren, Zhigang
    Wang, Muyi
    Liang, Yongsheng
    Liu, Hanqing
    Du, Wenhao
    INFORMATION SCIENCES, 2023, 622 : 437 - 455
  • [26] A Distributed Swarm Optimizer With Adaptive Communication for Large-Scale Optimization
    Yang, Qiang
    Chen, Wei-Neng
    Gu, Tianlong
    Zhang, Huaxiang
    Yuan, Huaqiang
    Kwong, Sam
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3393 - 3408
  • [27] A Three-Level Recursive Differential Grouping Method for Large-Scale Continuous Optimization
    Xu, Hong-Bin
    Li, Fei
    Shen, Hao
    IEEE ACCESS, 2020, 8 : 141946 - 141957
  • [28] A Multivariation Multifactorial Evolutionary Algorithm for Large-Scale Multiobjective Optimization
    Feng, Yinglan
    Feng, Liang
    Kwong, Sam
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 248 - 262
  • [29] Adaptive optimization of noisy black-box functions inherent in microscopic models
    Davis, E
    Bindal, A
    Ierapetritou, M
    European Symposium on Computer-Aided Process Engineering-15, 20A and 20B, 2005, 20a-20b : 193 - 198
  • [30] Black-Box Optimization in a Configuration System
    Kucher, Maximilian
    Balyo, Tomas
    Christensen, Noemi
    26TH ACM INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE, SPLC 2022, VOL B, 2022, : 229 - 236