The Number of Nonequivalent Monotone Boolean Functions of 8 Variables

被引:1
|
作者
Caric, Marko [1 ]
Zivkovic, Miodrag [2 ]
机构
[1] Natl Bank Serbia, Belgrade 174021, Serbia
[2] Univ Belgrade, Fac Math, Dept Informat, Belgrade 11000, Serbia
关键词
Boolean functions; monotone Boolean functions; Dedekind numbers; number of equivalence classes; integer partitions; EQUIVALENCE CLASSES;
D O I
10.1109/TIT.2022.3214973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Boolean function f : {0, 1}(n) bar right arrow {0, 1} is a monotone Boolean function (MBF) of n variables if for each pair of vectors x, y is an element of {0, 1}(n) from x <= y follows f (x) <= f (y). Two MBFs are considered equivalent if one of them can be obtained from the other by permuting the input variables. Let d(n) be the number of MBFs of n variables (which is known as Dedekind number) and let r(n) be a number of non-equivalent MBFs of n variables. The numbers d(n) and r(n) have been so far calculated for n <= 8, and n <= 7, respectively. This paper presents the calculation of r(8) = 1392195548889993358. Determining Dedekind numbers and r(n) is a long-standing problem.
引用
收藏
页码:4027 / 4034
页数:8
相关论文
共 50 条
  • [41] Efficient construction of DNF for some boolean functions with a small number of zeros
    Romanov M.Y.
    Pattern Recognition and Image Analysis, 2011, 21 (4) : 649 - 651
  • [42] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Yujuan Sun
    Jiafang Zhang
    Sugata Gangopadhyay
    Designs, Codes and Cryptography, 2019, 87 : 3045 - 3062
  • [43] Affine equivalence for rotation symmetric Boolean functions with 2k variables
    Cusick, Thomas W.
    Cheon, Younhwan
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (02) : 273 - 294
  • [44] Affine equivalence for rotation symmetric Boolean functions with 2k variables
    Thomas W. Cusick
    Younhwan Cheon
    Designs, Codes and Cryptography, 2012, 63 : 273 - 294
  • [45] Construction of resilient Boolean functions in odd variables with strictly almost optimal nonlinearity
    Sun, Yujuan
    Zhang, Jiafang
    Gangopadhyay, Sugata
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (12) : 3045 - 3062
  • [46] Almost Boolean functions: The design of Boolean functions by spectral inversion
    Clark, JA
    Jacob, JL
    Maitra, S
    Stanica, P
    COMPUTATIONAL INTELLIGENCE, 2004, 20 (03) : 450 - 462
  • [47] On the Number of Balanced Even-variable Boolean Functions with Maximum Algebraic Immunity
    Hai Xin
    Fu Shao-jing
    Li Chao
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 1647 - 1650
  • [48] The Degree of Balanced Elementary Symmetric Boolean Functions of 4K+3 Variables
    Gao, Guang-Pu
    Liu, Wen-Fen
    Zhang, Xi-Yong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4822 - 4825
  • [49] Symmetric Boolean functions
    Canteaut, A
    Videau, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) : 2791 - 2811
  • [50] The nonhomomorphicity of Boolean functions
    Zhang, XM
    Zheng, YL
    SELECTED AREAS IN CRYPTOGRAPHY, 1999, 1556 : 280 - 295