The Number of Nonequivalent Monotone Boolean Functions of 8 Variables

被引:1
|
作者
Caric, Marko [1 ]
Zivkovic, Miodrag [2 ]
机构
[1] Natl Bank Serbia, Belgrade 174021, Serbia
[2] Univ Belgrade, Fac Math, Dept Informat, Belgrade 11000, Serbia
关键词
Boolean functions; monotone Boolean functions; Dedekind numbers; number of equivalence classes; integer partitions; EQUIVALENCE CLASSES;
D O I
10.1109/TIT.2022.3214973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Boolean function f : {0, 1}(n) bar right arrow {0, 1} is a monotone Boolean function (MBF) of n variables if for each pair of vectors x, y is an element of {0, 1}(n) from x <= y follows f (x) <= f (y). Two MBFs are considered equivalent if one of them can be obtained from the other by permuting the input variables. Let d(n) be the number of MBFs of n variables (which is known as Dedekind number) and let r(n) be a number of non-equivalent MBFs of n variables. The numbers d(n) and r(n) have been so far calculated for n <= 8, and n <= 7, respectively. This paper presents the calculation of r(8) = 1392195548889993358. Determining Dedekind numbers and r(n) is a long-standing problem.
引用
收藏
页码:4027 / 4034
页数:8
相关论文
共 50 条
  • [21] Constructions of 1-resilient Boolean functions on odd number of variables with a high nonlinearity
    Zhang, Fengrong
    Hu, Yupu
    Xie, Min
    Wei, Yongzhuang
    SECURITY AND COMMUNICATION NETWORKS, 2012, 5 (06) : 614 - 624
  • [22] On the enumeration of Boolean functions with distinguished variables
    Josep Freixas
    Soft Computing, 2021, 25 : 12627 - 12640
  • [23] On the enumeration of Boolean functions with distinguished variables
    Freixas, Josep
    SOFT COMPUTING, 2021, 25 (19) : 12627 - 12640
  • [24] On learning monotone Boolean functions under the uniform distribution
    Amano, K
    Maruoka, A
    THEORETICAL COMPUTER SCIENCE, 2006, 350 (01) : 3 - 12
  • [25] A study on monotone self-dual Boolean functions
    Mustafa Altun
    Marc D. Riedel
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 43 - 52
  • [26] A Study on Monotone Self-Dual Boolean Functions
    Mustafa ALTUN
    Marc D.RIEDEL
    Acta Mathematicae Applicatae Sinica, 2017, 33 (01) : 43 - 52
  • [27] A Study on Monotone Self-Dual Boolean Functions
    Altun, Mustafa
    Riedel, Marc D.
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (01): : 43 - 52
  • [28] ON THE NUMBER OF EQUIVALENCE CLASSES OF INVERTIBLE BOOLEAN FUNCTIONS UNDER ACTION OF PERMUTATION OF VARIABLES ON DOMAIN AND RANGE
    Caric, Marko
    Zivkovic, Miodrag
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114): : 95 - 99
  • [29] A systematic method of constructing weightwise almost perfectly balanced Boolean functions on an arbitrary number of variables
    Zhu, Linya
    Su, Sihong
    DISCRETE APPLIED MATHEMATICS, 2022, 314 : 181 - 190
  • [30] Average case self-duality of monotone boolean functions
    Gaur, DR
    Krishnamurti, R
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2004, 3060 : 322 - 338