Rapid measurement of brown tide algae using Zernike moments and ensemble learning based on excitation-emission matrix fluorescence

被引:11
作者
Chen, Ying [1 ]
Chen, Ting [1 ]
Duan, Weiliang [1 ]
Liu, Junfei [1 ]
Si, Yu [1 ]
Dong, Zhiyang [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Hebei Prov Key Lab Test Measurement Technol & Inst, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Excitation emission matrix; Zernike moments; Ensemble learning; Feature selection; FAST COMPUTATION; NEURAL-NETWORKS; SPECTROSCOPY; RECOGNITION; PREDICTION; SPECTRA;
D O I
10.1016/j.saa.2023.122547
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Accurate real-time prediction of microalgae density has great practical significance for taking countermeasures before the advent of Harmful algal blooms (HABs), and the non-destructive and sensitive property of excitation -emission matrix fluorescence (EEMF) spectroscopy makes it applicable to online monitoring and control. In this study, an efficient image preprocessing algorithm based on Zernike moments (ZMs) was proposed to extract compelling features from EEM intensities images. The determination of the highest order of ZMs considered both reconstruction error and computational cost, then the optimal subset of preliminarily extracted 36 ZMs was screened via the BorutaShap algorithm. Aureococcus anophagefferens concentration prediction models were developed by combining BorutaShap and ensemble learning models (random forest (RF), gradient boosting decision tree (GBDT), and XGBoost). The experimental results show that BorutaShap_GBDT preserved the su-perior subset of ZMs, and the integration of BorutaShap_GBDT and XGBoost achieved the highest prediction accuracy. This research provides a new and promising strategy for rapidly measuring microalgae cell density.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations [J].
Bowling, Lee C. ;
Zamyadi, Arash ;
Henderson, Rita K. .
WATER RESEARCH, 2016, 105 :22-33
[3]   Artificial neural networks applied to fluorescence studies for accurate determination of N-butylpyridinium chloride concentration in aqueous solution [J].
Cancilla, John C. ;
Diaz-Rodriguez, Pablo ;
Izquierdo, Jesus G. ;
Banares, Luis ;
Torrecilla, Jose S. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 198 :173-179
[4]   Krawtchouk image moment method for the simultaneous determination of three drugs in human plasma based on fluorescence three-dimensional spectra [J].
Chen, Jing ;
Li, Bao Qiong ;
Xu, Min Li ;
Wang, Xue ;
Jing, Yu Hong ;
Zhai, Hong Lin .
TALANTA, 2016, 161 :99-104
[5]   A comparative analysis of algorithms for fast computation of Zernike moments [J].
Chong, CW ;
Raveendran, P ;
Mukundan, R .
PATTERN RECOGNITION, 2003, 36 (03) :731-742
[6]   Two-dimensional linear discriminant analysis for classification of three-way chemical data [J].
da Silva, Adenilton C. ;
Soares, Sofacles F. C. ;
Insausti, Matias ;
Galvao, Roberto K. H. ;
Band, Beatriz S. F. ;
de Araujo, Mario Cesar U. .
ANALYTICA CHIMICA ACTA, 2016, 938 :53-62
[7]   Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data [J].
Dev, Pravin Jeba ;
Sukenik, Assaf ;
Mishra, Deepak R. ;
Ostrovsky, Ilia .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 805
[8]   Direct quantification of red wine phenolics using fluorescence spectroscopy with chemometrics [J].
dos Santos, Isabel ;
Bosman, Gurthwin ;
Luis Aleixandre-Tudo, Jose ;
du Toit, Wessel .
TALANTA, 2022, 236
[9]   Cyanotoxin level prediction in a reservoir using gradient boosted regression trees: a case study [J].
Garcia Nieto, Paulino Jose ;
Garcia-Gonzalo, Esperanza ;
Sanchez Lasheras, Fernando ;
Alonso Fernandez, Jose Ramon ;
Diaz Muniz, Cristina ;
de Cos Juez, Francisco Javier .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (23) :22658-22671
[10]   Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics [J].
Gobler, Christopher J. ;
Berry, Dianna L. ;
Dyhrman, Sonya T. ;
Wilhelm, Steven W. ;
Salamov, Asaf ;
Lobanov, Alexei V. ;
Zhang, Yan ;
Collier, Jackie L. ;
Wurch, Louie L. ;
Kustka, Adam B. ;
Dill, Brian D. ;
Shah, Manesh ;
VerBerkmoes, Nathan C. ;
Kuo, Alan ;
Terry, Astrid ;
Pangilinan, Jasmyn ;
Lindquist, Erika A. ;
Lucas, Susan ;
Paulsen, Ian T. ;
Hattenrath-Lehmann, Theresa K. ;
Talmage, Stephanie C. ;
Walker, Elyse A. ;
Koch, Florian ;
Burson, Amanda M. ;
Marcoval, Maria Alejandra ;
Tang, Ying-Zhong ;
LeCleir, Gary R. ;
Coyne, Kathryn J. ;
Berg, Gry M. ;
Bertrand, Erin M. ;
Saito, Mak A. ;
Gladyshev, Vadim N. ;
Grigoriev, Igor V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (11) :4352-4357