Recent advances in data- and knowledge-driven approaches to explore primary microbial metabolism

被引:5
作者
Bartmanski, Bartosz Jan [1 ]
Rocha, Miguel [2 ]
Zimmermann-Kogadeeva, Maria [1 ]
机构
[1] Genome Biol Unit, European Mol Biol Lab, Heidelberg, Germany
[2] Univ Minho, Ctr Biol Engn, Campus Gualtar, Braga, Portugal
关键词
Metabolomics; Microbiota; Metabolic networks; Machine learning; Deep neural networks; Genome-scale models; Multi-omics integration; SPECTROMETRY-BASED METABOLOMICS; PREDICTION;
D O I
10.1016/j.cbpa.2023.102324
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the rapid progress in metabolomics and sequencing technologies, more data on the metabolome of single microbes and their communities become available, revealing the potential of microorganisms to metabolize a broad range of chemical compounds. The analysis of microbial metabolomics datasets remains challenging since it inherits the technical challenges of metabolomics analysis, such as compound identification and annotation, while harboring challenges in data interpretation, such as distinguishing metabolite sources in mixed samples. This review outlines the recent advances in computational methods to analyze primary microbial metabolism: knowledgebased approaches that take advantage of metabolic and molecular networks and data-driven approaches that employ machine/deep learning algorithms in combination with largescale datasets. These methods aim at improving metabolite identification and disentangling reciprocal interactions between microbes and metabolites. We also discuss the perspective of combining these approaches and further developments required to advance the investigation of primary metabolism in mixed microbial samples.
引用
收藏
页数:10
相关论文
共 81 条
[1]   A Comprehensive Evaluation of Metabolomics Data Preprocessing Methods for Deep Learning [J].
Abram, Krzysztof Jan ;
McCloskey, Douglas .
METABOLITES, 2022, 12 (03)
[2]   The gut microbiome and aquatic toxicology: An emerging concept for environmental health [J].
Adamovsky, Ondrej ;
Buerger, Amanda N. ;
Wormington, Alexis M. ;
Ector, Naomi ;
Griffitt, Robert J. ;
Bisesi, Joseph H., Jr. ;
Martyniuk, Christopher J. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2018, 37 (11) :2758-2775
[3]   A unified catalog of 204,938 reference genomes from the human gut microbiome [J].
Almeida, Alexandre ;
Nayfach, Stephen ;
Boland, Miguel ;
Strozzi, Francesco ;
Beracochea, Martin ;
Shi, Zhou Jason ;
Pollard, Katherine S. ;
Sakharova, Ekaterina ;
Parks, Donovan H. ;
Hugenholtz, Philip ;
Segata, Nicola ;
Kyrpides, Nikos C. ;
Finn, Robert D. .
NATURE BIOTECHNOLOGY, 2021, 39 (01) :105-114
[4]   Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices [J].
Alseekh, Saleh ;
Aharoni, Asaph ;
Brotman, Yariv ;
Contrepois, Kevin ;
D'Auria, John ;
Ewald, Jan ;
Ewald, Jennifer C. ;
Fraser, Paul D. ;
Giavalisco, Patrick ;
Hall, Robert D. ;
Heinemann, Matthias ;
Link, Hannes ;
Luo, Jie ;
Neumann, Steffen ;
Nielsen, Jens ;
de Souza, Leonardo Perez ;
Saito, Kazuki ;
Sauer, Uwe ;
Schroeder, Frank C. ;
Schuster, Stefan ;
Siuzdak, Gary ;
Skirycz, Aleksandra ;
Sumner, Lloyd W. ;
Snyder, Michael P. ;
Tang, Huiru ;
Tohge, Takayuki ;
Wang, Yulan ;
Wen, Weiwei ;
Wu, Si ;
Xu, Guowang ;
Zamboni, Nicola ;
Fernie, Alisdair R. .
NATURE METHODS, 2021, 18 (07) :747-756
[5]   The gutSMASH web server: automated identification of primary metabolic gene clusters from the gut microbiota [J].
Andreu, Victoria Pascal ;
Roel-Touris, Jorge ;
Dodd, Dylan ;
Fischbach, Michael A. ;
Medema, Marnix H. .
NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) :W263-W270
[6]   Enhancing Microbiome Research through Genome-Scale Metabolic Modeling [J].
Ankrah, Nana Y. D. ;
Bernstein, David B. ;
Biggs, Matthew ;
Carey, Maureen ;
Engevik, Melinda ;
Garcia-Jimenez, Beatriz ;
Lakshmanan, Meiyappan ;
Pacheco, Alan R. ;
Sulheim, Snorre ;
Medlock, Gregory L. .
MSYSTEMS, 2021, 6 (06)
[7]   The era of big data: Genome-scale modelling meets machine learning [J].
Antonakoudis, Athanasios ;
Barbosa, Rodrigo ;
Kotidis, Pavlos ;
Kontoravdi, Cleo .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :3287-3300
[8]   Natural products in drug discovery: advances and opportunities [J].
Atanasov, Atanas G. ;
Zotchev, Sergey B. ;
Dirsch, Verena M. ;
Supuran, Claudiu T. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (03) :200-216
[9]   Mass spectrometry-based metabolomics in microbiome investigations [J].
Bauermeister, Anelize ;
Mannochio-Russo, Helena ;
Costa-Lotufo, Leticia V. ;
Jarmusch, Alan K. ;
Dorrestein, Pieter C. .
NATURE REVIEWS MICROBIOLOGY, 2022, 20 (03) :143-160
[10]   MS2Compound: A User-Friendly Compound Identification Tool for LC-MS/MS-Based Metabolomics Data [J].
Behera, Santosh Kumar ;
Kasaragod, Sandeep ;
Karthikkeyan, Gayathree ;
Narayana Kotimoole, Chinmaya ;
Raju, Rajesh ;
Prasad, Thottethodi Subrahmanya Keshava ;
Subbannayya, Yashwanth .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2021, 25 (06) :389-399