Cauchy invariants and exact solutions of nonlinear equations of hydrodynamics

被引:0
|
作者
Abrashkin, A. A. [1 ,2 ]
Pelinovsky, E. N. [1 ,2 ]
机构
[1] Natl Res Univ Higher Sch Econ, Nizhnii Novgorod, Russia
[2] Russian Acad Sci, Inst Appl Phys, Fed Res Ctr, Nizhnii Novgorod, Russia
基金
俄罗斯科学基金会;
关键词
Lagrangian coordinates; Cauchy invariants; Gerstner wave; FORMULATION; PRESSURE; WAVES;
D O I
10.1134/S004057792305001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review exact solutions for gravity waves in deep water. All of them are obtained within the Lagrangian framework and are generalizations of Gerstner waves (to the cases of inhomogeneous pressure on the free surface and taking the rotation of the fluid into account). The Cauchy invariants are found for each type of waves.
引用
收藏
页码:599 / 608
页数:10
相关论文
共 50 条
  • [1] Cauchy invariants and exact solutions of nonlinear equations of hydrodynamics
    A. A. Abrashkin
    E. N. Pelinovsky
    Theoretical and Mathematical Physics, 2023, 215 : 599 - 608
  • [2] EXACT INVARIANTS FOR A CLASS OF NONLINEAR WAVE EQUATIONS
    KRUSKAL, MD
    ZABUSKY, NJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (07) : 1256 - &
  • [3] Differential invariants and exact solutions of the Einstein equations
    Lychagin, Valentin
    Yumaguzhin, Valeriy
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (02) : 107 - 115
  • [4] Differential invariants and exact solutions of the Einstein equations
    Valentin Lychagin
    Valeriy Yumaguzhin
    Analysis and Mathematical Physics, 2017, 7 : 107 - 115
  • [5] Exact solutions of nonlinear equations
    Yang, L
    Zhu, ZG
    Wang, YH
    PHYSICS LETTERS A, 1999, 260 (1-2) : 55 - 59
  • [6] Lame function and invariants of multi-order exact solutions among nonlinear evolution equations
    Liu, SK
    Chen, H
    Fu, ZT
    Liu, SD
    ACTA PHYSICA SINICA, 2003, 52 (08) : 1842 - 1847
  • [7] EXACT SOLUTIONS OF NONLINEAR ELECTRODYNAMIC EQUATIONS
    PUCHKOVA, NG
    SOVIET PHYSICS TECHNICAL PHYSICS-USSR, 1970, 14 (08): : 1034 - &
  • [8] Exact solutions of nonlinear Shrodinger equations
    Pu, LC
    Lin, ZB
    Zhang, XF
    Wang, BJ
    Jiang, Y
    Yan, TY
    ACTA PHYSICA SINICA, 2005, 54 (10) : 4472 - 4477
  • [9] Exact solutions to two nonlinear equations
    Zhang, JL
    Wang, YM
    Wang, ML
    Fang, ZD
    ACTA PHYSICA SINICA, 2003, 52 (07) : 1574 - 1578
  • [10] On exact solutions of nonlinear acoustic equations
    Kamchatnov, A. M.
    Pavlov, M. V.
    WAVE MOTION, 2016, 67 : 81 - 88