Allee effect in a diffusive predator-prey system with nonlocal prey competition

被引:6
作者
Yang, Youwei
Wu, Daiyong [1 ]
Shen, Chuansheng
Lu, Fengping
机构
[1] Anqing Normal Univ, Key Lab Modeling Simulat & Control Complex Ecosys, Anhui Higher Educt Inst, Anqing 246133, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey system; Nonlocal competition; Allee effect; Hopf bifurcation; Turing bifurcation; MODEL; DYNAMICS; PATTERNS;
D O I
10.1016/j.physa.2023.128606
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlocal competition and Allee effect have extensively been considered in modeling population dynamics of species independently. This paper introduces two aspects, which prey has nonlocal competition and predator is subject to Allee effect, in a predator- prey system to investigate the effects of predation on the spatial distribution of prey. The conditions for the coexistence equilibrium point to remain stable and to undergo spatially inhomogeneous Hopf bifurcation and Turing bifurcation have been studied. In the absence of Allee effect, we find that the coexistence equilibrium point of the system is locally asymptotically stable independent of the nonlocal competition. In the presence of Allee effect, nonlocal prey competition can destabilize the coexistence equilibrium point. Numerical simulations are carried out to illustrate the theoretical results. The amplitude of oscillation solution for nonlocal prey competition system is larger than local prey competition system until oscillation solution evolves to periodic solution. Also, nonlocal prey competition term can drive a spatially inhomogeneous Hopf bifurcation, and the spatially inhomogeneous periodic solution emerges. Moreover, it is showed that when the habitat domain is larger, comparing with local prey competition system, the prey diffusion coefficient of system with nonlocal prey competition needs to be larger for two species coexistence in the spatially homogeneous form.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] DYNAMICS IN A DIFFUSIVE PREDATOR-PREY SYSTEM WITH STAGE STRUCTURE AND STRONG ALLEE EFFECT
    Liu, Yuying
    Guo, Yuxiao
    Wei, Junjie
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 883 - 910
  • [22] Spatial dynamics of a fractional predator-prey system with time delay and Allee effect
    Bi, Zhimin
    Liu, Shutang
    Ouyang, Miao
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [23] Strong Allee effect in a diffusive predator-prey system with a protection zone
    Cui, Renhao
    Shi, Junping
    Wu, Boying
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (01) : 108 - 129
  • [24] Dynamics analysis of a predator-prey model with herd behavior and nonlocal prey competition
    Peng, Yahong
    Zhang, Guoying
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 170 (170) : 366 - 378
  • [25] Stability and spatiotemporal dynamics of a diffusive predator-prey system with generalist predator and nonlocal intraspecific competition
    Yang, Feng
    Song, Yongli
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 159 - 168
  • [26] Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior
    Zhang, Xiaowen
    Huang, Wufei
    Ma, Jiaxin
    Yang, Ruizhi
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (07): : 2510 - 2523
  • [27] Dynamical transition and bifurcation of a diffusive predator-prey model with an Allee effect on prey
    Li, Liang
    Hou, Zhibo
    Mao, Yiqiu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [28] Qualitative analysis of a predator-prey system with double Allee effect in prey
    Pal, Pallav Jyoti
    Saha, Tapan
    CHAOS SOLITONS & FRACTALS, 2015, 73 : 36 - 63
  • [29] Predator-prey dynamics with Allee effect in prey refuge
    Longxing Qi
    Lijuan Gan
    Meng Xue
    Sakhone Sysavathdy
    Advances in Difference Equations, 2015
  • [30] Influence of Allee effect and delay on dynamical behaviors of a predator-prey system
    Liu, Yuying
    Cao, Qi
    Yang, Wensheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08)