Effects of the Spacer Obstacles on the Capacitive Deionization Performance

被引:1
作者
Hadidi, Hooman [1 ]
Khorasgani, Behnam Ghasaban [2 ]
Ahmadi, Javad [3 ]
机构
[1] Kermanshah Univ Technol, Dept Mech Engn, Kermanshah 6715685420, Iran
[2] Iran Univ Sci & Technol, Dept Chem Engn, Tehran 16844, Iran
[3] Amirkabir Univ Technol, Tehran Polytech, Dept Chem Engn, Tehran 5748113478, Iran
关键词
Capacitive deionization; Obstacle; Adsorption; Desalination; Porous electrode; POROUS-ELECTRODES; WATER DESALINATION; CARBON ELECTRODES; ENERGY; OPTIMIZATION; RECOVERY; DESIGN; MODEL;
D O I
10.1149/1945-7111/accfc3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The capacitive deionization (CDI) process uses porous electrodes to adsorb electrostatic ions, offering the possibility of efficient desalination of salty water. The purpose of this study is to investigate the effects of obstacles in CDI spacers on charge transfer and adsorption. The results reveal that the adsorption rate of the CDI cells increases remarkably for the obstacle height ratios of h = 0.8 and 0.9 in comparison with the original channel. In contrast, the performance deteriorates for the cells with height ratios of h = 0.3 and 0.6. For desalination operations that end at half the equilibrium salt adsorption capacity (SAC), the CDI channel containing rectangular obstacles covering 80% of the channel, improves the ASAR (0.13 mg g(-1) min(-1)) by 8% compared to the same situation with the original spacer (0.12 mg g(-1) min(-1)). This gain increases to 25% for the barriers covering 90% of the channel height. The results show that as the barrier height is modest, it prevents salt from entering the electrodes, allowing a low concentration zone to be identified adjacent to the barrier inside the electrode. Interestingly, if the barrier height ratio is as high as h = 0.8 and 0.9, the strong vortices facilitate the ions transfer towards the electrode and consequently, more adsorption occurs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Long-term durability of commercial capacitive deionization modules
    Nordstrand, Johan
    Laxman, Karthik
    Dutta, Joydeep
    DESALINATION, 2024, 576
  • [32] Faster bipolar capacitive deionization with flow-through electrodes
    Nordstrand, Johan
    Dutta, Joydeep
    ELECTROCHIMICA ACTA, 2023, 467
  • [33] An Easy-to-Use Tool for Modeling the Dynamics of Capacitive Deionization
    Nordstrand, Johan
    Laxman, Karthik
    Myint, Myo Tay Zar
    Dutta, Joydeep
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (30) : 6628 - 6634
  • [34] Hierarchically yolk-shell porous carbon sphere as an electrode material for high-performance capacitive deionization
    Wei, Xujie
    Li, Xiujuan
    Lv, Cuicui
    Mo, Xiaoping
    Li, Kexun
    ELECTROCHIMICA ACTA, 2020, 354
  • [35] Influence of natural organic matter on membrane capacitive deionization performance
    Shim, Jaegyu
    Yoon, Nakyung
    Park, Sanghun
    Park, Jongkwan
    Son, Moon
    Jeong, Kwanho
    Cho, Kyung Hwa
    CHEMOSPHERE, 2021, 264
  • [36] Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review
    Elisadiki, Joyce
    King'ondu, Cecil K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 878 (878)
  • [37] Performance analysis of a capacitive deionization stack for brackish water desalination
    Lado, Julio J.
    Cartolano, Vincenzo
    Garcia-Quismondo, Enrique
    Garcia, Guzman
    Almonacid, Ignacio
    Senatore, Vincenzo
    Naddeo, Vincenzo
    Palma, Jesus
    Anderson, Marc A.
    DESALINATION, 2021, 501 (501)
  • [38] Fluorination effect of activated carbons on performance of asymmetric capacitive deionization
    Jo, Hanjoo
    Kim, Kyung Hoon
    Jung, Min-Jung
    Park, Jae Hyun
    Lee, Young-Seak
    APPLIED SURFACE SCIENCE, 2017, 409 : 117 - 123
  • [39] Capacitive deionization with wire-shaped electrodes
    Mubita, T. M.
    Porada, S.
    Biesheuvel, P. M.
    van der Wal, A.
    Dykstra, J. E.
    ELECTROCHIMICA ACTA, 2018, 270 : 165 - 173
  • [40] Capacitive deionization of water using mosaic membrane
    Volfkovich, Yu. M.
    Rychagov, A. Yu.
    Mikhalin, A. A.
    Kardash, M. M.
    Kononenko, N. A.
    Ainetdinov, D. V.
    Shkirskaya, S. A.
    Sosenkin, V. E.
    DESALINATION, 2018, 426 : 1 - 10