Prostate Cancer Classifier based on Three-Dimensional Magnetic Resonance Imaging and Convolutional Neural Networks

被引:0
|
作者
Perea, Ana -Maria Minda [1 ]
Albu, Adriana [2 ]
机构
[1] Politehn Univ Timisoara, Fac Automation & Comp, Timisoara, Romania
[2] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara, Romania
关键词
prostate cancer; classification; decision-making; diagnosis; CNN; MRI;
D O I
10.56415/csjm.v31.02
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main reason for this research is the worldwide existence of a large number of prostate cancers. This article underlines how necessary medical imaging is, in association with artificial intelligence, in early detection of this medical condition. The diagnosis of a patient with prostate cancer is conventionally made based on multiple biopsies, histopathologic tests and other procedures that are time consuming and directly dependent on the experience level of the radiologist. The deep learning algorithms reduce the investigation time and could help medical staff. This work proposes a binary classification algorithm which uses convolutional neural networks to predict whether a 3D MRI scan contains a malignant lesion or not. The provided result can be a starting point in the diagnosis phase. The investigation, however, should be finalized by a human expert.
引用
收藏
页码:22 / 44
页数:23
相关论文
共 50 条
  • [41] Brain tumour detection from magnetic resonance imaging using convolutional neural networks
    Rethemiotaki, Irene
    WSPOLCZESNA ONKOLOGIA-CONTEMPORARY ONCOLOGY, 2023, 27 (04): : 230 - 241
  • [42] The emerging role of magnetic resonance imaging in the diagnosis and management of prostate cancer
    Barocas, Daniel A.
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2016, 34 (07)
  • [43] Application value of magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer
    Zhang, Tianhe
    Zhou, Zhiyong
    Li, Wuxue
    Xu, Changbao
    Zhao, Shuailin
    Wei, Haiyang
    Huang, Zhiheng
    Zhao, Xinghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] Magnetic resonance imaging of prostate cancer
    Guneyli, Serkan
    Erdem, Cemile Zuhal
    Erdem, Lutfi Oktay
    CLINICAL IMAGING, 2016, 40 (04) : 601 - 609
  • [45] Magnetic resonance imaging and prostate cancer
    Cornud, F.
    Villers, A.
    Mongiat-Artus, P.
    Rebillard, X.
    Soulie, M.
    PROGRES EN UROLOGIE, 2008, 18 (10): : 621 - 633
  • [46] Spinal Stenosis Grading in Magnetic Resonance Imaging Using Deep Convolutional Neural Networks
    Won, Dongkyu
    Lee, Hyun-Joo
    Lee, Suk-Joong
    Park, Sang Hyun
    SPINE, 2020, 45 (12) : 804 - 812
  • [47] Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer
    Marco Krengli
    Gianfranco Loi
    Carla Pisani
    Debora Beldì
    Giuseppina Apicella
    Valentina Amisano
    Marco Brambilla
    Radiation Oncology, 11
  • [48] MULTIPARAMETRIC MAGNETIC RESONANCE IMAGING IN PROSTATE CANCER DETECTION
    Garcia-Cruz, Eduardo
    Ramon-Barcelo, Catalina
    Carrion-Puig, Ramon
    Alcaraz, Antonio
    ARCHIVOS ESPANOLES DE UROLOGIA, 2019, 72 (04): : 374 - 380
  • [49] Three-dimensional surface and ultrasound imaging for daily IGRT of prostate cancer
    Krengli, Marco
    Loi, Gianfranco
    Pisani, Carla
    Beldi, Debora
    Apicella, Giuseppina
    Amisano, Valentina
    Brambilla, Marco
    RADIATION ONCOLOGY, 2016, 11
  • [50] Hippocampal segmentation for brains with extensive atrophy using three-dimensional convolutional neural networks
    Goubran, Maged
    Ntiri, Emmanuel Edward
    Akhavein, Hassan
    Holmes, Melissa
    Nestor, Sean
    Ramirez, Joel
    Adamo, Sabrina
    Ozzoude, Miracle
    Scott, Christopher
    Gao, Fuqiang
    Martel, Anne
    Swardfager, Walter
    Masellis, Mario
    Swartz, Richard
    MacIntosh, Bradley
    Black, Sandra E.
    HUMAN BRAIN MAPPING, 2020, 41 (02) : 291 - 308