Thermally tunable metasurface mode switch between Fano resonance and Breit-Wigner resonance

被引:3
|
作者
Yang, Yuan [1 ,2 ]
Peng, Cheng [1 ,2 ]
Liang, Danqi [1 ,2 ]
Shang, Xiongjun [1 ,2 ]
Xu, Chenlei [1 ,2 ]
He, Qian [1 ,2 ]
Li, Tong [1 ,2 ]
Wang, Lingling [3 ]
机构
[1] Changsha Univ Sci & Technol, Sch Phys & Elect Sci, Changsha 410004, Peoples R China
[2] Changsha Univ Sci & Technol, Hunan Prov Key Lab Flexible Elect Mat Genome Engn, Changsha 410004, Peoples R China
[3] Hunan Univ, Sch Phys & Elect, Changsha 410082, Peoples R China
关键词
metasurface; vanadium dioxide; thermally tunable; Breit-Wigner resonance; Fano resonance;
D O I
10.35848/1882-0786/accb3b
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metasurface opens a gateway to manipulate electromagnetic properties by establishing various resonance modes. But the vast majority of metasurface resonance modes are statically adjustable. In this work, the vanadium dioxide is introduced into a mirror-symmetric double-splitting semicircle ring resonator to constitute a tunable metasurface mode switch between the Fano resonance and Breit-Wigner resonance, which is controlled by two external temperatures. The numerical simulation results show that the proposed metasurface expresses the Fano resonance around 1258 nm when the temperatures are T (1) = 27 degrees C and T (2) = 82 degrees C. When T (1) = T (2) = 27 degrees C or 82 degrees C, the Breit-Wigner resonance mode can be excited near 1100 nm. This mode switch behavior can be well understood with the surface current distribution and multipole electromagnetic decomposition.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Compact Plasmonic Structure Induced Mode Excitation and Fano Resonance
    Zhao Chen
    Yaolun Yu
    Yangyang Wang
    Nan Guo
    Lin Xiao
    Plasmonics, 2020, 15 : 2177 - 2183
  • [32] Compact Plasmonic Structure Induced Mode Excitation and Fano Resonance
    Chen, Zhao
    Yu, Yaolun
    Wang, Yangyang
    Guo, Nan
    Xiao, Lin
    PLASMONICS, 2020, 15 (06) : 2177 - 2183
  • [33] Tunable Resonance and Phase Vortices in Kirigami Fano-Resonant Metamaterials
    Jeong, Hoon Yeub
    Lim, Yeonsoo
    An, Soo-Chan
    Thi Hai-Yen Nguyen
    Byun, Gangil
    Jun, Young Chul
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (08):
  • [34] All-Dielectric Metasurface Dual-Parameter Sensor Based on Fano Resonance
    Nan, Xueying
    Liu, Huigang
    Liu, Haitao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2024, 51 (02):
  • [35] Fano resonance in silver nanoparticles in SOI structure: Design of plasmonic nano switch
    Dillu, Venus
    Shruti
    Sinha, Ravindra Kumar
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XI, 2013, 8809
  • [36] Complex amplitude modulation metasurface with dual resonance in transmission mode
    Jiang, Qiang
    He, Zehao
    Jin, Guofan
    Cao, Liangcai
    PRACTICAL HOLOGRAPHY XXXIII: DISPLAYS, MATERIALS, AND APPLICATIONS, 2019, 10944
  • [37] All-optical switch exploiting Fano resonance and subwavelength light confinement
    Saudan, Quentin
    Bekele, Dagmawi A.
    Xiong, Meng
    Yvind, Kresten
    Galili, Michael
    Mork, Jesper
    NANOPHOTONICS, 2025,
  • [38] Tunable triple Fano resonance in MIM waveguide system with split ring resonator
    Liu, Xuebo
    Yang, Qian
    Peng, Kexue
    Zhang, Baohua
    Bai, Haineng
    Li, Xin
    Tan, Yang
    Zhang, Zheng
    Guo, Fuqiang
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (08)
  • [39] Actively Tunable Fano Resonance Based on a T-Shaped Graphene Nanodimer
    Liu, Gui-dong
    Zhai, Xiang
    Wang, Ling-Ling
    Wang, Ben-xin
    Lin, Qi
    Shang, Xiong-jun
    PLASMONICS, 2016, 11 (02) : 381 - 387
  • [40] Evidence of Tunable Fano Resonance in a Liquid Crystal-Based Colloidal Metamaterial
    Bhardwaj, Amit
    Sridurai, Vimala
    Puthoor, Navas Meleth
    Nair, Aswathi B.
    Ahuja, Tripti
    Nair, Geetha G.
    ADVANCED OPTICAL MATERIALS, 2020, 8 (11)