Two-Dimensional Beam Steering Using a Stacked Modulated Geodesic Luneburg Lens Array Antenna for 5G and Beyond

被引:29
作者
Castillo-Tapia, Pilar [1 ]
Zetterstrom, Oskar [1 ]
Algaba-Brazalez, Astrid [2 ]
Manholm, Lars [2 ]
Johansson, Martin [2 ]
Fonseca, Nelson J. G. [3 ]
Quevedo-Teruel, Oscar [1 ]
机构
[1] KTH Royal Inst Technol, Div Electromagnet Engn, SE-10044 Stockholm, Sweden
[2] Ericsson AB, Ericsson Res, S-41756 Gothenburg, Sweden
[3] European Space Agcy, Antenna & Submillimetre Waves Sect, NL-2200 AG Noordwijk, Netherlands
关键词
Lenses; Antenna arrays; Antennas; Surface impedance; Impedance; Refractive index; Antenna feeds; Geodesic lens; lens antenna; linear array; Lune-burg lens; multibeam antennas; DESIGN;
D O I
10.1109/TAP.2022.3217175
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Antennas for future communication systems are required to be highly directive and steerable to compensate for the high path loss in the millimeter-wave band. In this work, we propose a linear array of modulated geodesic Luneburg lens (the so-called water drop lens) antennas operating at 56-62 GHz. The lens array antenna features 2-D beam scanning with low structural complexity. The lenses are fully metallic and implemented in parallel plate waveguides (PPWs), meaning that they are highly efficient. Each lens is fed with 13 rectangular waveguides surrounded by glide-symmetric holes to suppress leakage. The lenses provide 110(?) beam coverage in the H-plane with scan losses below 1 dB. In order to scan in the E-plane, we use a feeding network based on a 1:4 power divider and three phase shifters. In this configuration, the array can scan 60(?) in the E-plane, albeit with higher scanning losses than in the H-plane. The lens array is manufactured and a good agreement between simulated and experimental results is obtained.
引用
收藏
页码:487 / 496
页数:10
相关论文
共 39 条
[1]   Phase-Gradient Meta-Dome for Increasing Grating-Lobe-Free Scan Range in Phased Arrays [J].
Benini, Alice ;
Martini, Enrica ;
Monni, Stefania ;
Vigano, Maria Carolina ;
Silvestri, Fabrizio ;
Gandini, Erio ;
Gerini, Giampiero ;
Toso, Giovanni ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (08) :3973-3982
[2]  
Blass J., 1960, IRE INT CONVENTION R, V8, P48, DOI DOI 10.1109/IRECON.1960.1150892
[3]  
Butler J., 1961, ELECTRON DES, V9, P170
[4]   A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications [J].
Chen, Peng ;
Hong, Wei ;
Kuai, Zhenqi ;
Xu, Junfeng .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (06) :374-376
[5]   Accurate Characterization and Design Guidelines of Glide-Symmetric Holey EBG [J].
Chen, Qiao ;
Mesa, Francisco ;
Yin, Xiaoxing ;
Quevedo-Teruel, Oscar .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (12) :4984-4994
[6]   A Low-Cost Wideband 77-GHz Planar Butler Matrix in SIW Technology [J].
Djerafi, Tarek ;
Wu, Ke .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (10) :4949-4954
[7]   Broadband Substrate Integrated Waveguide 4 x 4 Nolen Matrix Based on Coupler Delay Compensation [J].
Djerafi, Tarek ;
Fonseca, Nelson J. G. ;
Wu, Ke .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (07) :1740-1745
[8]   Shaped Continuous Parallel Plate Delay Lens With Enhanced Scanning Performance [J].
Doucet, Francois ;
Fonseca, Nelson J. G. ;
Girard, Etienne ;
Morvan, Xavier ;
Le Coq, Laurent ;
Legay, Herve ;
Sauleau, Ronan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (11) :6695-6704
[9]   Using Glide-Symmetric Holes to Reduce Leakage Between Waveguide Flanges [J].
Ebrahimpouri, Mahsa ;
Brazalez, Astrid Algaba ;
Manholm, Lars ;
Quevedo-Teruel, Oscar .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (06) :473-475
[10]   Cost-Effective Gap Waveguide Technology Based on Glide-Symmetric Holey EBG Structures [J].
Ebrahimpouri, Mahsa ;
Rajo-Iglesias, Eva ;
Sipus, Zvonimir ;
Quevedo-Teruel, Oscar .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (02) :927-934