Pyrene-Based Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production

被引:152
|
作者
Sun, Jiamin [1 ]
Jena, Himanshu Sekhar [1 ]
Krishnaraj, Chidharth [1 ]
Rawat, Kuber Singh [2 ]
Abednatanzi, Sara [1 ]
Chakraborty, Jeet [1 ]
Laemont, Andreas [1 ]
Liu, Wanlu [1 ]
Chen, Hui [1 ]
Liu, Ying-Ya [3 ]
Leus, Karen [1 ]
Vrielinck, Henk [4 ]
Van Speybroeck, Veronique [2 ]
Van Der Voort, Pascal [1 ]
机构
[1] Univ Ghent, Ctr Ordered Mat, Dept Chem, COMOC, Krijgslaan 281, Bldg S3, B-9000 Ghent, Belgium
[2] Univ Ghent, Ctr Mol Modeling CMM, Technologiepark 46, B-9052 Zwijnaarde, Belgium
[3] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116023, Peoples R China
[4] Univ Ghent, Dept Solid State Sci, Krijgslaan 281, Bldg S1, B-9000 Ghent, Belgium
关键词
Covalent Organic Frameworks; Hydrogen Peroxide Generation; Oxygen Reduction; Photocatalysis; Pyrene; H2O2; PRODUCTION; CARBON;
D O I
10.1002/anie.202216719
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four highly porous covalent organic frameworks (COFs) containing pyrene units were prepared and explored for photocatalytic H2O2 production. The experimental studies are complemented by density functional theory calculations, proving that the pyrene unit is more active for H2O2 production than the bipyridine and (diarylamino)benzene units reported previously. H2O2 decomposition experiments verified that the distribution of pyrene units over a large surface area of COFs plays an important role in catalytic performance. The Py-Py-COF though contains more pyrene units than other COFs which induces a high H2O2 decomposition due to a dense concentration of pyrene in close proximity over a limited surface area. Therefore, a two-phase reaction system (water-benzyl alcohol) was employed to inhibit H2O2 decomposition. This is the first report on applying pyrene-based COFs in a two-phase system for photocatalytic H2O2 generation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Exploration of iodine adsorption performance of pyrene-based two-dimensional covalent organic frameworks
    He, Weican
    Wang, Shenglin
    Hu, Hui
    Yang, Jiaxin
    Huang, Tiao
    Su, Xiaofang
    Xiao, Songtao
    Wang, Jianyi
    Gao, Yanan
    RSC ADVANCES, 2024, 14 (35) : 25695 - 25702
  • [32] Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production
    Lin, Zheng
    Yu, Xiangkun
    Zhao, Zijian
    Ding, Ning
    Wang, Changchun
    Hu, Ke
    Zhu, Youliang
    Guo, Jia
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [33] Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production
    Wang, Lin
    Zhang, Yong
    SMALL, 2025, 21 (03)
  • [34] Effective Strategies in Covalent Organic Frameworks for Enhanced Photocatalytic Hydrogen Production
    Chen, Mengyao
    Fu, Guang-en
    Zhao, Wenkai
    Zhang, Tao
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [35] Photocatalytic Production of Hydrogen Peroxide from Covalent Organic Framework Materials
    Chen, Anqi
    Jiang, Zhiwei
    Tang, Juntao
    Yu, Guipeng
    PROGRESS IN CHEMISTRY, 2024, 36 (03) : 357 - 366
  • [36] Enhancing the crystallinity of covalent organic frameworks to achieve improved photocatalytic hydrogen peroxide production under ambient conditions
    Zhou, Chongsheng
    Tao, Le
    Gao, Jia
    Dong, Jingcun
    Zhu, Qingqing
    Liao, Chunyang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 153 : 172 - 181
  • [37] A thioether-functionalized pyrene-based covalent organic framework anchoring ultrafine Au nanoparticles for efficient photocatalytic hydrogen generation
    Zhou, Zhiming
    Bie, Chuanbiao
    Li, Peize
    Tan, Bien
    Shen, Yan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (10) : 2699 - 2707
  • [38] Enhanced Photocatalytic Production of Hydrogen Peroxide by Covalent Triazine Frameworks with Stepwise Electron Transfer
    Zhang, Hao
    Wei, Wenxin
    Chi, Kai
    Zheng, Yong
    Kong, Xin Ying
    Ye, Liqun
    Zhao, Yan
    Zhang, Kai A. I.
    ACS CATALYSIS, 2024, 14 (23): : 17654 - 17663
  • [39] Multi-plateau water adsorption of pyrene-based covalent organic frameworks for potential humidity control
    Liu, Tianyi
    Cheng, Pengfei
    Liu, Jiaojiao
    Yang, Li
    Li, Zhen
    Li, Yimeng
    Deng, Weiqiao
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [40] Facile Transformation of Imine Linkages and Functionalization of Aldehyde in the Covalent Organic Frameworks for Stable and Enhanced Photocatalytic Hydrogen Peroxide Production
    Rong, Qinfeng
    Chen, Xianlan
    Huang, Zhiling
    Li, Shuying
    He, Sijing
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) : 3163 - 3171