On the multi-parameterized inequalities involving the tempered fractional integral operators

被引:5
|
作者
Tan, Pinzheng [1 ]
Du, Tingsong [1 ,2 ]
机构
[1] China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Coll Sci, Dept Math, Yichang 443002, Peoples R China
关键词
Hermite-Hadamard-type integral inequalities; Incomplete gamma function; Fractional integrals; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS; DIFFERENTIABLE MAPPINGS; REAL NUMBERS; SIMPSON TYPE; EXTENSION;
D O I
10.2298/FIL2315919T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In virtue of the conception of the tempered fractional integrals, put forward by Sabzikar et al. in the published article [J. Comput. Phys., 293: 14-28, 2015], we present a fractional integral identity together with multi-parameter. Based on it, we develop certain parameterized integral inequalities in association with differentiable mappings. Furthermore, we give two examples to verify the correctness of the derived findings.
引用
收藏
页码:4919 / 4941
页数:23
相关论文
共 50 条
  • [31] Chebyshev-Type Inequalities Involving (k,psi)-Proportional Fractional Integral Operators
    Yewale, Bhagwat R.
    Pachpatte, Deepak B.
    Aljaaidi, Tariq A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [32] Some inequalities involving Hadamard-type k-fractional integral operators
    Agarwal, Praveen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3882 - 3891
  • [33] On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators
    Celik, Baris
    Gurbuz, Mustafa C.
    Ozdemir, M. Emin
    Set, Erhan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [34] On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators
    Barış Çelik
    Mustafa Ç. Gürbüz
    M. Emin Özdemir
    Erhan Set
    Journal of Inequalities and Applications, 2020
  • [35] Certain Hermite-Hadamard type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Celik, Baris
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1539 - 1547
  • [36] Hermite-Hadamard-Fejer type inequalities involving generalized fractional integral operators
    Set, Erhan
    Choi, Junesang
    Alan, E. Aykan
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1007 - 1027
  • [37] Hermite–Hadamard–Fejér type inequalities involving generalized fractional integral operators
    Erhan Set
    Junesang Choi
    E. Aykan Alan
    The Journal of Analysis, 2019, 27 : 1007 - 1027
  • [38] Simpson Type Inequalities for Twice-differentiable Functions Arising from Tempered Fractional Integral Operators
    Cai, Jieyin
    Wang, Bin
    Du, Tingsong
    IAENG International Journal of Applied Mathematics, 2024, 54 (05) : 831 - 839
  • [39] Some New Parameterized Quantum Fractional Integral Inequalities Involving s-Convex Functions and Applications
    Kashuri, Artion
    Samraiz, Muhammad
    Rahman, Gauhar
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (12):
  • [40] A Family of Multi-Parameterized Proximal Point Algorithms
    Bai, Jianchao
    Guo, Ke
    Chang, Xiaokai
    IEEE ACCESS, 2019, 7 : 164021 - 164028