Numerical approximation of a potentials formulation for the elasticity vibration problem

被引:0
作者
Albella, J. [1 ]
Rodriguez, R. [2 ]
Venegas, P. [3 ]
机构
[1] Univ Santiago De Compostela, Dept Didact Aplicadas, E-15782 Santiago De Compostela, Spain
[2] Univ Concepcion, Dept Ingn Matemat, CI 2 MA, Concepcion, Chile
[3] Univ Bio Bio, Dept Matemat, GIMNAP, Concepcion, Chile
关键词
Spectral elasticity problem; Helmholtz decomposition; Potentials; Finite element method;
D O I
10.1016/j.camwa.2023.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a numerical approximation of the elasticity vibration problem based on a potentials decomposition. Decomposing the displacements field into potentials is a well-known tool in elastodynamics that takes advantage of the decoupling of pressure waves and shear waves inside a homogeneous isotropic media. In the spectral problem on a bounded domain, this decomposition decouples the elasticity equations into two Laplacian-like equations that only interact at the boundary. We show that spurious eigenvalues appear when Lagrangian finite elements are used to discretize the problem. Then, we propose an alternative weak formulation which avoids this drawback. A finite element discretization of this weak formulation based again on Lagrangian finite elements is proposed and tested by means of some numerical experiments, which show convergence and absence of spurious modes.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [1] NUMERICAL APPROXIMATION OF THE DISPLACEMENT FORMULATION OF THE AXISYMMETRIC ACOUSTIC VIBRATION PROBLEM
    Querales, Jose
    Rodriguez, Rodolfo
    Venegas, Pablo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) : A1583 - A1606
  • [2] A STUDY OF PENALTY FORMULATIONS USED IN THE NUMERICAL APPROXIMATION OF A RADIALLY SYMMETRIC ELASTICITY PROBLEM
    Aguiar, Adair R.
    Fosdick, Roger L.
    Sanchez, Jesus A. G.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2008, 3 (08) : 1403 - 1427
  • [3] Formulation of local numerical methods in linear elasticity
    Oliveira, Tiago
    Velez, Wilber
    Portela, Artur
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2020, 16 (05) : 853 - 886
  • [4] The Method of Numerical Analysis for the Elasticity Problem with Singularity
    Rukavishnikov, V. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [5] Combined Semianalytical and Numerical Static Plate Analysis. Part 1: Formulation of the Problem and Approximation Models
    Negrozov, Oleg
    Akimov, Pavel
    Mozgaleva, Marina
    XXVII R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (27RSP) (TFOCE 2018), 2018, 196
  • [6] Numerical Approximation of a Unilateral Obstacle Problem
    E. B. Mermri
    W. Han
    Journal of Optimization Theory and Applications, 2012, 153 : 177 - 194
  • [7] Numerical Approximation of a Unilateral Obstacle Problem
    Mermri, E. B.
    Han, W.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (01) : 177 - 194
  • [8] Numerical approximation of the general compressible Stokes problem
    Fettah, A.
    Gallouet, T.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 922 - 951
  • [9] Numerical approximation of the Newtonian film blowing problem
    Ervin, VJ
    Shepherd, JJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1687 - 1707
  • [10] Numerical approximation of a viscoelastic frictional contact problem
    Rodriguez-Aros, Angel
    Sofonea, Mircea
    Viano, Juan
    COMPTES RENDUS MECANIQUE, 2006, 334 (05): : 279 - 284